Cargando…
Comparison of reader agreement, correlation with liver biopsy, and time-burden sampling strategies for liver proton density fat fraction measured using magnetic resonance imaging in patients with obesity: a secondary cross-sectional study
BACKGROUND: The magnetic resonance imaging (MRI)-based proton density fat fraction (PDFF) has become popular for quantifying liver fat content. However, the variability of the region-of-interest (ROI) sampling strategy may result in a lack of standardisation of this technology. In an effort to estab...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112589/ https://www.ncbi.nlm.nih.gov/pubmed/35581577 http://dx.doi.org/10.1186/s12880-022-00821-6 |
Sumario: | BACKGROUND: The magnetic resonance imaging (MRI)-based proton density fat fraction (PDFF) has become popular for quantifying liver fat content. However, the variability of the region-of-interest (ROI) sampling strategy may result in a lack of standardisation of this technology. In an effort to establish an accurate and effective PDFF measurement scheme, this study assessed the pathological correlation, the reader agreement, and time-burden of different sampling strategies with variable ROI size, location, and number. METHODS: Six-echo spoiled gradient-recalled-echo magnitude-based fat quantification was performed for 50 patients with obesity, using a 3.0-T MRI scanner. Two readers used different ROI sampling strategies to measure liver PDFF, three times. Intra-reader and inter-reader agreement was evaluated using intra-class correlation coefficients and Bland‒Altman analysis. Pearson correlations were used to assess the correlation between PDFFs and liver biopsy. Time-burden was recorded. RESULTS: For pathological correlations, the correlations for the strategy of using three large ROIs in Couinaud segment 3 (S3 3L-ROI) were significantly greater than those for all sampling strategies at the whole-liver level (P < 0.05). For inter-reader agreement, the sampling strategies at the segmental level for S3 3L-ROI and using three large ROIs in Couinaud segment 6 (S6 3L-ROI) and the sampling strategies at the whole-liver level for three small ROIs per Couinaud segment (27S-ROI), one large ROI per Couinaud segment (9L-ROI), and three large ROIs per Couinaud segment (27S-ROI) had limits of agreement (LOA) < 1.5%. For intra-reader agreement, the sampling strategies at the whole-liver level for 27S-ROI, 9L-ROI, and 27L-ROI had both intraclass coefficients > 0.995 and LOAs < 1.5%. The change in the time-burden was the largest (100.80 s) when 9L-ROI was changed to 27L-ROI. CONCLUSIONS: For hepatic PDFF measurement without liver puncture biopsy as the gold standard, and for general hepatic PDFF assessment, 9L-ROI sampling strategy at the whole-liver level should be used preferentially. For hepatic PDFF with liver puncture biopsy as the gold standard, 3L-ROI sampling strategy at the puncture site segment is recommended. |
---|