Cargando…
Nanoelectrokinetic-assisted lateral flow assay for COVID-19 antibody test
A lateral flow assay (LFA) platform is a powerful tool for point-of-care testing (POCT), especially for self-testing. Although the LFA platform provides a simple and disposable tool for Coronavirus disease of 2019 (COVID-19) antigen (Ag) and antibody (Ab) screening tests, the lower sensitivity for l...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112610/ https://www.ncbi.nlm.nih.gov/pubmed/35623254 http://dx.doi.org/10.1016/j.bios.2022.114385 |
Sumario: | A lateral flow assay (LFA) platform is a powerful tool for point-of-care testing (POCT), especially for self-testing. Although the LFA platform provides a simple and disposable tool for Coronavirus disease of 2019 (COVID-19) antigen (Ag) and antibody (Ab) screening tests, the lower sensitivity for low virus titers has been a bottleneck for practical applications. Herein, we report the combination of a microfluidic paper-based nanoelectrokinetic (NEK) preconcentrator and an LFA platform for enhancing the sensitivity and limit of detection (LOD). Biomarkers were electrokinetically preconcentrated onto a specific layer using the NEK preconcentrator, which was then coupled with LFA diagnostic devices for enhanced performance. Using this nanoelectrokinetic-assisted LFA (NEK-LFA) platform for self-testing, the severe acute respiratory syndrome coronavirus 2 Immunoglobulin G (SARS-CoV-2 IgG) sample was preconcentrated from serum samples. After preconcentration, the LOD of the LFA was enhanced by 32-fold, with an increase in analytical sensitivity (16.4%), which may offer a new opportunity for POCT and self-testing, especially in the COVID-19 pandemic and endemic global context. |
---|