Cargando…

Survey of Supervised Learning for Medical Image Processing

Medical image interpretation is an essential task for the correct diagnosis of many diseases. Pathologists, radiologists, physicians, and researchers rely heavily on medical images to perform diagnoses and develop new treatments. However, manual medical image analysis is tedious and time consuming,...

Descripción completa

Detalles Bibliográficos
Autores principales: Aljuaid, Abeer, Anwar, Mohd
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112642/
https://www.ncbi.nlm.nih.gov/pubmed/35602289
http://dx.doi.org/10.1007/s42979-022-01166-1
Descripción
Sumario:Medical image interpretation is an essential task for the correct diagnosis of many diseases. Pathologists, radiologists, physicians, and researchers rely heavily on medical images to perform diagnoses and develop new treatments. However, manual medical image analysis is tedious and time consuming, making it necessary to identify accurate automated methods. Deep learning—especially supervised deep learning—shows impressive performance in the classification, detection, and segmentation of medical images and has proven comparable in ability to humans. This survey aims to help researchers and practitioners of medical image analysis understand the key concepts and algorithms of supervised learning techniques. Specifically, this survey explains the performance metrics of supervised learning methods; summarizes the available medical datasets; studies the state-of-the-art supervised learning architectures for medical imaging processing, including convolutional neural networks (CNNs) and their corresponding algorithms, region-based CNNs and their variants, fully convolutional networks (FCN) and U-Net architecture; and discusses the trends and challenges in the application of supervised learning methods to medical image analysis. Supervised learning requires large labeled datasets to learn and achieve good performance, and data augmentation, transfer learning, and dropout techniques have widely been employed in medical image processing to overcome the lack of such datasets.