Cargando…
Learning deep neural networks' architectures using differential evolution. Case study: Medical imaging processing
The COVID-19 pandemic has changed the way we practice medicine. Cancer patient and obstetric care landscapes have been distorted. Delaying cancer diagnosis or maternal-fetal monitoring increased the number of preventable deaths or pregnancy complications. One solution is using Artificial Intelligenc...
Autor principal: | Belciug, Smaranda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Author. Published by Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9112664/ https://www.ncbi.nlm.nih.gov/pubmed/35751202 http://dx.doi.org/10.1016/j.compbiomed.2022.105623 |
Ejemplares similares
-
Automated Gleason grading of prostate cancer using transfer learning from general-purpose deep-learning networks
por: Şerbănescu, Mircea-Sebastian, et al.
Publicado: (2020) -
Artificial intelligence in cancer: diagnostic to tailored treatment
por: Belciug, Smaranda
Publicado: (2020) -
Embedded deep learning: algorithms, architectures and circuits for always-on neural network processing
por: Moons, Bert, et al.
Publicado: (2019) -
Era of Intelligent Systems in Healthcare
por: Belciug, Smaranda, et al.
Publicado: (2019) -
Modelling Peri-Perceptual Brain Processes in a Deep Learning Spiking Neural Network Architecture
por: Gholami Doborjeh, Zohreh, et al.
Publicado: (2018)