Cargando…
Analysing high-throughput sequencing data in Python with HTSeq 2.0
SUMMARY: HTSeq 2.0 provides a more extensive application programming interface including a new representation for sparse genomic data, enhancements for htseq-count to suit single-cell omics, a new script for data using cell and molecular barcodes, improved documentation, testing and deployment, bug...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113351/ https://www.ncbi.nlm.nih.gov/pubmed/35561197 http://dx.doi.org/10.1093/bioinformatics/btac166 |
Sumario: | SUMMARY: HTSeq 2.0 provides a more extensive application programming interface including a new representation for sparse genomic data, enhancements for htseq-count to suit single-cell omics, a new script for data using cell and molecular barcodes, improved documentation, testing and deployment, bug fixes and Python 3 support. AVAILABILITY AND IMPLEMENTATION: HTSeq 2.0 is released as an open-source software under the GNU General Public License and is available from the Python Package Index at https://pypi.python.org/pypi/HTSeq. The source code is available on Github at https://github.com/htseq/htseq. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|