Cargando…
Analysing high-throughput sequencing data in Python with HTSeq 2.0
SUMMARY: HTSeq 2.0 provides a more extensive application programming interface including a new representation for sparse genomic data, enhancements for htseq-count to suit single-cell omics, a new script for data using cell and molecular barcodes, improved documentation, testing and deployment, bug...
Autores principales: | Putri, Givanna H, Anders, Simon, Pyl, Paul Theodor, Pimanda, John E, Zanini, Fabio |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113351/ https://www.ncbi.nlm.nih.gov/pubmed/35561197 http://dx.doi.org/10.1093/bioinformatics/btac166 |
Ejemplares similares
-
HTSeq—a Python framework to work with high-throughput sequencing data
por: Anders, Simon, et al.
Publicado: (2015) -
htseq-clip: a toolset for the preprocessing of eCLIP/iCLIP datasets
por: Sahadevan, Sudeep, et al.
Publicado: (2022) -
ProDy 2.0: increased scale and scope after 10 years of protein dynamics modelling with Python
por: Zhang, She, et al.
Publicado: (2021) -
h5vc: scalable nucleotide tallies with HDF5
por: Pyl, Paul Theodor, et al.
Publicado: (2014) -
Logomaker: beautiful sequence logos in Python
por: Tareen, Ammar, et al.
Publicado: (2020)