Cargando…

Pedigree-based analyses of changes in genetic variability in three major swine breeds in Taiwan after a disease outbreak

Pedigree analysis was performed in three major Taiwanese swine breeds to evaluate the genetic variability in the current population and determine the main reason for genetic diversity (GD) loss after the occurrence of foot-and-mouth disease (FMD) in Taiwan. The pedigree files of the Duroc, Landrace,...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Ruei-Syuan, Wang, Hsu-Chang, Su, Chan Liang, Wang, Pei-Hwa, Lin, En-Chung
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113419/
https://www.ncbi.nlm.nih.gov/pubmed/35592093
http://dx.doi.org/10.1093/tas/txac043
Descripción
Sumario:Pedigree analysis was performed in three major Taiwanese swine breeds to evaluate the genetic variability in the current population and determine the main reason for genetic diversity (GD) loss after the occurrence of foot-and-mouth disease (FMD) in Taiwan. The pedigree files of the Duroc, Landrace, and Yorkshire breeds, containing 60,237, 87,177, and 34,373 records, respectively, were analyzed. We divided the population into two subpopulations (pre-1998 and post-1998) to determine the role of FMD in GD loss. Pedigree completeness and related indicators were analyzed to evaluate the pedigree quality, and several parameters were used to measure the levels of GD and further used to determine the major cause of GD loss. The pedigree completeness indexes for the different breeds were higher than 0.60, and the trend was enhanced after the FMD outbreak. The estimated proportion of random genetic drift in GD loss increased in all breeds over time (from 62.64% to 78.44% in Duroc; from 26.26% to 57.99% in Landrace; and from 47.97% to 55.00% in Yorkshire, respectively). The effective population size of Duroc and Landrace were increased by the time (Duroc: from 61.73 to 84.75; Landrace: from 108.70 to 113.64); however, it shows opposite trend in Yorkshire population (decline from 86.21 to 50.00). In summary, the occurrence of FMD led to the major loss of GD loss by random genetic drift. Therefore, for the recovery of GD, breeders in Taiwan should increase the effective population size with newly imported genetic materials and adjust the breeding strategy to reduce the inbreeding rate.