Cargando…

Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells

Transforming growth factor-β (TGF-β) is an important inducer of the epithelial-to-mesenchymal transition (EMT) in various cancers. Our previous study demonstrated that prohaptoglobin (proHp) stimulates Smad1/5 activation via ALK1, a TGF-β type I receptor, in endothelial cells, suggesting that proHp...

Descripción completa

Detalles Bibliográficos
Autores principales: Oh, Mi-Kyung, Joo, Hansol, Kim, In-Sook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113573/
https://www.ncbi.nlm.nih.gov/pubmed/35580109
http://dx.doi.org/10.1371/journal.pone.0266409
_version_ 1784709609394536448
author Oh, Mi-Kyung
Joo, Hansol
Kim, In-Sook
author_facet Oh, Mi-Kyung
Joo, Hansol
Kim, In-Sook
author_sort Oh, Mi-Kyung
collection PubMed
description Transforming growth factor-β (TGF-β) is an important inducer of the epithelial-to-mesenchymal transition (EMT) in various cancers. Our previous study demonstrated that prohaptoglobin (proHp) stimulates Smad1/5 activation via ALK1, a TGF-β type I receptor, in endothelial cells, suggesting that proHp plays a role in TGF-β signaling. However, the function of proHp in cellular events downstream of Smads remains unclear. The current study investigated the effects of proHp on TGF-β-mediated Smad-dependent EMT induction and cell invasion in vitro using proHp-overexpressing SK-Hep1 liver cancer cells. The results of Western blotting, quantitative real-time RT-PCR, and immunocytochemistry indicated that proHp downregulated expression of mesenchymal marker and EMT regulator such as N-cadherin, vimentin, and twist, and upregulated expression of the epithelial marker E-cadherin. Compared with control cells, proHp-overexpressing cells exhibited high levels of ALK1/2/3 receptors and markedly increased Smad1/5 phosphorylation. Interestingly, proHp attenuated TGF-β-induced expression of mesenchymal markers and Smad2/3 phosphorylation. It also significantly suppressed cell invasion and migration. Knockdown of Smad1/5 abolished the inhibitory effects of proHp on TGF-β-stimulated Smad2/3 phosphorylation and mesenchymal marker expression. These findings indicate that proHp suppresses the TGF-β-induced EMT and cell invasion in vitro by enhancing Smad1/5 activation via ALK1/2/3 receptors and thus suppressing the Smad2/3 signaling pathway in SK-Hep1 cells. This study suggests that proHp may prevent a de-differentiation of hepatic cells and induce a cell differentiation by regulating the Smad signaling pathway.
format Online
Article
Text
id pubmed-9113573
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-91135732022-05-18 Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells Oh, Mi-Kyung Joo, Hansol Kim, In-Sook PLoS One Research Article Transforming growth factor-β (TGF-β) is an important inducer of the epithelial-to-mesenchymal transition (EMT) in various cancers. Our previous study demonstrated that prohaptoglobin (proHp) stimulates Smad1/5 activation via ALK1, a TGF-β type I receptor, in endothelial cells, suggesting that proHp plays a role in TGF-β signaling. However, the function of proHp in cellular events downstream of Smads remains unclear. The current study investigated the effects of proHp on TGF-β-mediated Smad-dependent EMT induction and cell invasion in vitro using proHp-overexpressing SK-Hep1 liver cancer cells. The results of Western blotting, quantitative real-time RT-PCR, and immunocytochemistry indicated that proHp downregulated expression of mesenchymal marker and EMT regulator such as N-cadherin, vimentin, and twist, and upregulated expression of the epithelial marker E-cadherin. Compared with control cells, proHp-overexpressing cells exhibited high levels of ALK1/2/3 receptors and markedly increased Smad1/5 phosphorylation. Interestingly, proHp attenuated TGF-β-induced expression of mesenchymal markers and Smad2/3 phosphorylation. It also significantly suppressed cell invasion and migration. Knockdown of Smad1/5 abolished the inhibitory effects of proHp on TGF-β-stimulated Smad2/3 phosphorylation and mesenchymal marker expression. These findings indicate that proHp suppresses the TGF-β-induced EMT and cell invasion in vitro by enhancing Smad1/5 activation via ALK1/2/3 receptors and thus suppressing the Smad2/3 signaling pathway in SK-Hep1 cells. This study suggests that proHp may prevent a de-differentiation of hepatic cells and induce a cell differentiation by regulating the Smad signaling pathway. Public Library of Science 2022-05-17 /pmc/articles/PMC9113573/ /pubmed/35580109 http://dx.doi.org/10.1371/journal.pone.0266409 Text en © 2022 Oh et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Oh, Mi-Kyung
Joo, Hansol
Kim, In-Sook
Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells
title Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells
title_full Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells
title_fullStr Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells
title_full_unstemmed Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells
title_short Prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing Smad1/5 activation and suppressing the Smad2/3 signaling pathway in SK-Hep1 liver cancer cells
title_sort prohaptoglobin inhibits the transforming growth factor-β-induced epithelial-to-mesenchymal transition in vitro by increasing smad1/5 activation and suppressing the smad2/3 signaling pathway in sk-hep1 liver cancer cells
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113573/
https://www.ncbi.nlm.nih.gov/pubmed/35580109
http://dx.doi.org/10.1371/journal.pone.0266409
work_keys_str_mv AT ohmikyung prohaptoglobininhibitsthetransforminggrowthfactorbinducedepithelialtomesenchymaltransitioninvitrobyincreasingsmad15activationandsuppressingthesmad23signalingpathwayinskhep1livercancercells
AT joohansol prohaptoglobininhibitsthetransforminggrowthfactorbinducedepithelialtomesenchymaltransitioninvitrobyincreasingsmad15activationandsuppressingthesmad23signalingpathwayinskhep1livercancercells
AT kiminsook prohaptoglobininhibitsthetransforminggrowthfactorbinducedepithelialtomesenchymaltransitioninvitrobyincreasingsmad15activationandsuppressingthesmad23signalingpathwayinskhep1livercancercells