Cargando…
Ensemble model for rail surface defects detection
The detection of rail surface defects is vital for high-speed rail maintenance and management. The CNN-based computer vision approach has been proved to be a strong detection tool widely used in various industrial scenarios. However, the CNN-based detection models are diverse from each other in perf...
Autores principales: | Li, Hailang, Wang, Fan, Liu, Junbo, Song, Haoran, Hou, Zhixiong, Dai, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113582/ https://www.ncbi.nlm.nih.gov/pubmed/35580111 http://dx.doi.org/10.1371/journal.pone.0268518 |
Ejemplares similares
-
Correction: Ensemble model for rail surface defects detection
por: Li, Hailang, et al.
Publicado: (2023) -
On the Use of Microwave Holography to Detect Surface Defects of Rails and Measure the Rail Profile
por: Zhuravlev, Andrey, et al.
Publicado: (2019) -
FS-RSDD: Few-Shot Rail Surface Defect Detection with Prototype Learning
por: Min, Yongzhi, et al.
Publicado: (2023) -
Detection of Rail Defects Using NDT Methods
por: Xiong, Longhui, et al.
Publicado: (2023) -
Detection and Classification System for Rail Surface Defects Based on Eddy Current
por: Alvarenga, Tiago A., et al.
Publicado: (2021)