Cargando…

High-power modelocked thin-disk oscillators as potential technology for high-rate material processing

High average power femtosecond lasers have made spectacular progress in the last decades – moving from laboratory-based systems with maximum average powers of tens of watts to kilowatt-class mature industrial systems in a short time. The availability of such systems opens new possibilities in many f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Yicheng, Tomilov, Sergei, Saraceno, Clara J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113671/
https://www.ncbi.nlm.nih.gov/pubmed/35881661
http://dx.doi.org/10.1515/aot-2021-0045
Descripción
Sumario:High average power femtosecond lasers have made spectacular progress in the last decades – moving from laboratory-based systems with maximum average powers of tens of watts to kilowatt-class mature industrial systems in a short time. The availability of such systems opens new possibilities in many fields; one of the most prominent ones that have driven many of these technological advances is precise high-speed material processing, where ultrashort pulses have long been recognized to provide highest precision processing of virtually any material, and high average power extends these capabilities to highest processing rates. Here, we focus our attention on one high-average power technology with large unexplored potential for this specific application: directly modelocked multi-MHz repetition frequency high-power thin-disk oscillators. We review their latest state-of-the-art and discuss future directions and challenges, specifically with this application field in mind.