Selective inhibition reveals the regulatory function of DYRK2 in protein synthesis and calcium entry

The dual-specificity tyrosine phosphorylation-regulated kinase DYRK2 has emerged as a critical regulator of cellular processes. We took a chemical biology approach to gain further insights into its function. We developed C17, a potent small-molecule DYRK2 inhibitor, through multiple rounds of struct...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Tiantian, Wang, Jue, Liang, Ruqi, Chen, Wendong, Chen, Yilan, Ma, Mingzhe, He, An, Du, Yifei, Zhou, Wenjing, Zhang, Zhiying, Zeng, Xin, Wang, Chu, Lu, Jin, Guo, Xing, Chen, Xiao-Wei, Wang, Youjun, Tian, Ruijun, Xiao, Junyu, Lei, Xiaoguang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113749/
https://www.ncbi.nlm.nih.gov/pubmed/35439114
http://dx.doi.org/10.7554/eLife.77696
Descripción
Sumario:The dual-specificity tyrosine phosphorylation-regulated kinase DYRK2 has emerged as a critical regulator of cellular processes. We took a chemical biology approach to gain further insights into its function. We developed C17, a potent small-molecule DYRK2 inhibitor, through multiple rounds of structure-based optimization guided by several co-crystallized structures. C17 displayed an effect on DYRK2 at a single-digit nanomolar IC(50) and showed outstanding selectivity for the human kinome containing 467 other human kinases. Using C17 as a chemical probe, we further performed quantitative phosphoproteomic assays and identified several novel DYRK2 targets, including eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1) and stromal interaction molecule 1 (STIM1). DYRK2 phosphorylated 4E-BP1 at multiple sites, and the combined treatment of C17 with AKT and MEK inhibitors showed synergistic 4E-BP1 phosphorylation suppression. The phosphorylation of STIM1 by DYRK2 substantially increased the interaction of STIM1 with the ORAI1 channel, and C17 impeded the store-operated calcium entry process. These studies collectively further expand our understanding of DYRK2 and provide a valuable tool to pinpoint its biological function.