Cargando…

A 1% TBSA Chart Reduces Math Errors While Retaining Acceptable First-Estimate Accuracy

Life-threatening and treatment-altering errors occur in estimates of the percentage of total body surface area burned (%TBSA burned) with unacceptable frequency. In response, numerous attempts have been made to improve the charts commonly used for %TBSA-burned estimation. Recent research shows that...

Descripción completa

Detalles Bibliográficos
Autores principales: Ray, William C, Rajab, Adrian, Alexander, Hope, Chmil, Brianna, Rumpf, Robert Wolfgang, Thakkar, Rajan, Viswanathan, Madhubalan, Fabia, Renata
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113823/
https://www.ncbi.nlm.nih.gov/pubmed/34665849
http://dx.doi.org/10.1093/jbcr/irab192
Descripción
Sumario:Life-threatening and treatment-altering errors occur in estimates of the percentage of total body surface area burned (%TBSA burned) with unacceptable frequency. In response, numerous attempts have been made to improve the charts commonly used for %TBSA-burned estimation. Recent research shows that the largest errors in %TBSA-burned estimates probably come from sources other than inaccurate values in the charts. Here, we develop a taxonomy of the possible sources of error and their impact on %TBSA-burned estimates. Also, we observe that different caregivers have different estimation needs: First-responders require a rapid estimate with sufficient accuracy to enable them to begin care and determine patient transport options, while burn surgeons ordering skin grafts desire accuracy to the square centimeter, and can afford considerable time to attain that accuracy. These competing needs suggest that a one-tool-fits-all-caregivers approach is suboptimal. We therefore present a validated, simplified burn chart that minimizes one of the largest sources of random errors in %TBSA-burned estimates—simple calculation errors—while also being quick and requiring little training. NCHart-1 also enables simple consensus estimates, as well as separation of estimation subtasks across caregivers, leading to several potential improvements in mass casualty situations. Our results demonstrate that NCHart-1 possesses the accuracy necessary for first responders, while reliably producing results in less than 2 minutes. Of 76 healthcare professionals surveyed, a large majority indicated a preference for NCHart-1 over their previous methods for ease of both use and training. For clinical or commercial use of NCHart-1, please contact: tech.commercialization@nationwidechildrens.org