Cargando…
Diagnosis of Lumbar Spondylolisthesis Using a Pruned CNN Model
Convolutional neural network (CNN) models have made tremendous progress in the medical domain in recent years. The application of the CNN model is restricted due to a huge number of redundant and unnecessary parameters. In this paper, the weight and unit pruning strategy are used to reduce the compl...
Autores principales: | Saravagi, Deepika, Agrawal, Shweta, Saravagi, Manisha, Rahman, Md Habibur |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113885/ https://www.ncbi.nlm.nih.gov/pubmed/35592683 http://dx.doi.org/10.1155/2022/2722315 |
Ejemplares similares
-
Diagnosis of Lumbar Spondylolisthesis Using Optimized Pretrained CNN Models
por: Saravagi, Deepika, et al.
Publicado: (2022) -
Traumatic lumbar spondylolisthesis
por: Tang, Shujie
Publicado: (2013) -
Nursing review of diagnosis and treatment of lumbar degenerative spondylolisthesis
por: Epstein, Nancy E., et al.
Publicado: (2017) -
Heuristic Method for Minimizing Model Size of CNN by Combining Multiple Pruning Techniques
por: Tian, Danhe, et al.
Publicado: (2022) -
Retrain or Not Retrain? - Efficient Pruning Methods of Deep CNN Networks
por: Pietron, Marcin, et al.
Publicado: (2020)