Cargando…
Diversity and distribution of Type VI Secretion System gene clusters in bacterial plasmids
Type VI Secretion System (T6SS) is a nanomolecular apparatus that allows the delivery of effector molecules through the cell envelope of a donor bacterium to prokaryotic and/or eukaryotic cells, playing a role in the bacterial competition, virulence, and host interaction. T6SS is patchily distribute...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9113992/ https://www.ncbi.nlm.nih.gov/pubmed/35581398 http://dx.doi.org/10.1038/s41598-022-12382-3 |
Sumario: | Type VI Secretion System (T6SS) is a nanomolecular apparatus that allows the delivery of effector molecules through the cell envelope of a donor bacterium to prokaryotic and/or eukaryotic cells, playing a role in the bacterial competition, virulence, and host interaction. T6SS is patchily distributed in bacterial genomes, suggesting an association with horizontal gene transfer (HGT). In fact, T6SS gene loci are eventually found within genomic islands (GIs), and there are some reports in plasmids and integrative and conjugative elements (ICEs). The impact that T6SS may have on bacteria fitness and the lack of evidence on its spread mechanism led us to question whether plasmids could represent a key mechanism in the spread of T6SS in bacteria. Therefore, we performed an in-silico analysis to reveal the association between T6SS and plasmids. T6SS was mined on 30,660 plasmids from NCBI based on the presence of at least six T6SS core proteins. T6SS was identified in 330 plasmids, all belonging to the same type (T6SS(i)), mainly in Proteobacteria (328/330), particularly in Rhizobium and Ralstonia. Interestingly, most genomes carrying T6SS-harboring plasmids did not encode T6SS in their chromosomes, and, in general, chromosomal and plasmid T6SSs did not form separate clades. |
---|