Cargando…
Expert surgeons and deep learning models can predict the outcome of surgical hemorrhage from 1 min of video
Major vascular injury resulting in uncontrolled bleeding is a catastrophic and often fatal complication of minimally invasive surgery. At the outset of these events, surgeons do not know how much blood will be lost or whether they will successfully control the hemorrhage (achieve hemostasis). We eva...
Autores principales: | Pangal, Dhiraj J., Kugener, Guillaume, Zhu, Yichao, Sinha, Aditya, Unadkat, Vyom, Cote, David J., Strickland, Ben, Rutkowski, Martin, Hung, Andrew, Anandkumar, Animashree, Han, X. Y., Papyan, Vardan, Wrobel, Bozena, Zada, Gabriel, Donoho, Daniel A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114003/ https://www.ncbi.nlm.nih.gov/pubmed/35581213 http://dx.doi.org/10.1038/s41598-022-11549-2 |
Ejemplares similares
-
Utility of the Simulated Outcomes Following Carotid Artery Laceration Video Data Set for Machine Learning Applications
por: Kugener, Guillaume, et al.
Publicado: (2022) -
"Are we recording this?" Surgeons deserve next-generation analytics
por: Pangal, Dhiraj J., et al.
Publicado: (2023) -
A vision transformer for decoding surgeon activity from surgical videos
por: Kiyasseh, Dani, et al.
Publicado: (2023) -
A multi-institutional study using artificial intelligence to provide reliable and fair feedback to surgeons
por: Kiyasseh, Dani, et al.
Publicado: (2023) -
Human visual explanations mitigate bias in AI-based assessment of surgeon skills
por: Kiyasseh, Dani, et al.
Publicado: (2023)