Cargando…
Chemical property prediction under experimental biases
Predicting the chemical properties of compounds is crucial in discovering novel materials and drugs with specific desired characteristics. Recent significant advances in machine learning technologies have enabled automatic predictive modeling from past experimental data reported in the literature. H...
Autores principales: | Liu, Yang, Kashima, Hisashi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114131/ https://www.ncbi.nlm.nih.gov/pubmed/35581358 http://dx.doi.org/10.1038/s41598-022-12116-5 |
Ejemplares similares
-
Dual graph convolutional neural network for predicting chemical networks
por: Harada, Shonosuke, et al.
Publicado: (2020) -
The effect of chemical erosion on mechanical properties and fracture of sandstone under shear loading: an experimental study
por: Chen, Cancan, et al.
Publicado: (2019) -
Magnetostrictive Properties of the Grain-Oriented Silicon Steel Sheet under DC-Biased and Multisinusoidal Magnetizations
por: Zhao, Xiaojun, et al.
Publicado: (2019) -
Prediction for minimum bias and the underlying event at LHC energies
por: Moraes, A, et al.
Publicado: (2005) -
Biased under-reporting of research reflects biased under-submission more than biased editorial rejection
por: Chalmers, Iain, et al.
Publicado: (2013)