Cargando…
Lipschitzness is all you need to tame off-policy generative adversarial imitation learning
Despite the recent success of reinforcement learning in various domains, these approaches remain, for the most part, deterringly sensitive to hyper-parameters and are often riddled with essential engineering feats allowing their success. We consider the case of off-policy generative adversarial imit...
Autores principales: | Blondé, Lionel, Strasser, Pablo, Kalousis, Alexandros |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114147/ https://www.ncbi.nlm.nih.gov/pubmed/35602587 http://dx.doi.org/10.1007/s10994-022-06144-5 |
Ejemplares similares
-
Lipschitz functions
por: Cobzaş, Ştefan, et al.
Publicado: (2019) -
Domain Adaptation for Imitation Learning Using Generative Adversarial Network
por: Nguyen Duc, Tho, et al.
Publicado: (2021) -
Classification of Lipschitz mappings
por: Piasecki, Lukasz
Publicado: (2013) -
Bi-Lipschitz Parameterization of Surfaces
por: Bonk, M, et al.
Publicado: (2002) -
Modeling Car-Following Behaviors and Driving Styles with Generative Adversarial Imitation Learning
por: Zhou, Yang, et al.
Publicado: (2020)