Cargando…

Nuclear RNA transcript levels modulate nucleocytoplasmic distribution of ALS/FTD-associated protein FUS

Fused in Sarcoma (FUS) is a nuclear RNA/DNA binding protein that mislocalizes to the cytoplasm in the neurodegenerative diseases ALS and FTD. Despite the existence of FUS pathogenic mutations that result in nuclear import defects, a subset of ALS/FTD patients display cytoplasmic accumulation of wild...

Descripción completa

Detalles Bibliográficos
Autores principales: Tsai, Yueh-Lin, Mu, Yu Chun, Manley, James L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114323/
https://www.ncbi.nlm.nih.gov/pubmed/35581240
http://dx.doi.org/10.1038/s41598-022-12098-4
Descripción
Sumario:Fused in Sarcoma (FUS) is a nuclear RNA/DNA binding protein that mislocalizes to the cytoplasm in the neurodegenerative diseases ALS and FTD. Despite the existence of FUS pathogenic mutations that result in nuclear import defects, a subset of ALS/FTD patients display cytoplasmic accumulation of wild-type FUS, although the underlying mechanism is unclear. Here we confirm that transcriptional inhibition, specifically of RNA polymerase II (RNAP II), induces FUS cytoplasmic translocation, but we show that several other stresses do not. We found unexpectedly that the epitope specificity of different FUS antibodies significantly affects the apparent FUS nucleocytoplasmic ratio as determined by immunofluorescence, explaining inconsistent observations in previous studies. Significantly, depletion of the nuclear mRNA export factor NXF1 or RNA exosome cofactor MTR4 promotes FUS nuclear retention, even when transcription is repressed, while mislocalization was independent of the nuclear protein export factor CRM1 and import factor TNPO1. Finally, we report that levels of nascent RNAP II transcripts, including those known to bind FUS, are reduced in sporadic ALS iPS cells, linking possible aberrant transcriptional control and FUS cytoplasmic mislocalization. Our findings thus reveal that factors that influence accumulation of nuclear RNAP II transcripts modulate FUS nucleocytoplasmic homeostasis, and provide evidence that reduced RNAP II transcription can contribute to FUS mislocalization to the cytoplasm in ALS.