Cargando…

A benchmark dataset for Hydrogen Combustion

The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC)...

Descripción completa

Detalles Bibliográficos
Autores principales: Guan, Xingyi, Das, Akshaya, Stein, Christopher J., Heidar-Zadeh, Farnaz, Bertels, Luke, Liu, Meili, Haghighatlari, Mojtaba, Li, Jie, Zhang, Oufan, Hao, Hongxia, Leven, Itai, Head-Gordon, Martin, Head-Gordon, Teresa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114378/
https://www.ncbi.nlm.nih.gov/pubmed/35581204
http://dx.doi.org/10.1038/s41597-022-01330-5
_version_ 1784709759679594496
author Guan, Xingyi
Das, Akshaya
Stein, Christopher J.
Heidar-Zadeh, Farnaz
Bertels, Luke
Liu, Meili
Haghighatlari, Mojtaba
Li, Jie
Zhang, Oufan
Hao, Hongxia
Leven, Itai
Head-Gordon, Martin
Head-Gordon, Teresa
author_facet Guan, Xingyi
Das, Akshaya
Stein, Christopher J.
Heidar-Zadeh, Farnaz
Bertels, Luke
Liu, Meili
Haghighatlari, Mojtaba
Li, Jie
Zhang, Oufan
Hao, Hongxia
Leven, Itai
Head-Gordon, Martin
Head-Gordon, Teresa
author_sort Guan, Xingyi
collection PubMed
description The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional, ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction.
format Online
Article
Text
id pubmed-9114378
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-91143782022-05-19 A benchmark dataset for Hydrogen Combustion Guan, Xingyi Das, Akshaya Stein, Christopher J. Heidar-Zadeh, Farnaz Bertels, Luke Liu, Meili Haghighatlari, Mojtaba Li, Jie Zhang, Oufan Hao, Hongxia Leven, Itai Head-Gordon, Martin Head-Gordon, Teresa Sci Data Data Descriptor The generation of reference data for deep learning models is challenging for reactive systems, and more so for combustion reactions due to the extreme conditions that create radical species and alternative spin states during the combustion process. Here, we extend intrinsic reaction coordinate (IRC) calculations with ab initio MD simulations and normal mode displacement calculations to more extensively cover the potential energy surface for 19 reaction channels for hydrogen combustion. A total of ∼290,000 potential energies and ∼1,270,000 nuclear force vectors are evaluated with a high quality range-separated hybrid density functional, ωB97X-V, to construct the reference data set, including transition state ensembles, for the deep learning models to study hydrogen combustion reaction. Nature Publishing Group UK 2022-05-17 /pmc/articles/PMC9114378/ /pubmed/35581204 http://dx.doi.org/10.1038/s41597-022-01330-5 Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Guan, Xingyi
Das, Akshaya
Stein, Christopher J.
Heidar-Zadeh, Farnaz
Bertels, Luke
Liu, Meili
Haghighatlari, Mojtaba
Li, Jie
Zhang, Oufan
Hao, Hongxia
Leven, Itai
Head-Gordon, Martin
Head-Gordon, Teresa
A benchmark dataset for Hydrogen Combustion
title A benchmark dataset for Hydrogen Combustion
title_full A benchmark dataset for Hydrogen Combustion
title_fullStr A benchmark dataset for Hydrogen Combustion
title_full_unstemmed A benchmark dataset for Hydrogen Combustion
title_short A benchmark dataset for Hydrogen Combustion
title_sort benchmark dataset for hydrogen combustion
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114378/
https://www.ncbi.nlm.nih.gov/pubmed/35581204
http://dx.doi.org/10.1038/s41597-022-01330-5
work_keys_str_mv AT guanxingyi abenchmarkdatasetforhydrogencombustion
AT dasakshaya abenchmarkdatasetforhydrogencombustion
AT steinchristopherj abenchmarkdatasetforhydrogencombustion
AT heidarzadehfarnaz abenchmarkdatasetforhydrogencombustion
AT bertelsluke abenchmarkdatasetforhydrogencombustion
AT liumeili abenchmarkdatasetforhydrogencombustion
AT haghighatlarimojtaba abenchmarkdatasetforhydrogencombustion
AT lijie abenchmarkdatasetforhydrogencombustion
AT zhangoufan abenchmarkdatasetforhydrogencombustion
AT haohongxia abenchmarkdatasetforhydrogencombustion
AT levenitai abenchmarkdatasetforhydrogencombustion
AT headgordonmartin abenchmarkdatasetforhydrogencombustion
AT headgordonteresa abenchmarkdatasetforhydrogencombustion
AT guanxingyi benchmarkdatasetforhydrogencombustion
AT dasakshaya benchmarkdatasetforhydrogencombustion
AT steinchristopherj benchmarkdatasetforhydrogencombustion
AT heidarzadehfarnaz benchmarkdatasetforhydrogencombustion
AT bertelsluke benchmarkdatasetforhydrogencombustion
AT liumeili benchmarkdatasetforhydrogencombustion
AT haghighatlarimojtaba benchmarkdatasetforhydrogencombustion
AT lijie benchmarkdatasetforhydrogencombustion
AT zhangoufan benchmarkdatasetforhydrogencombustion
AT haohongxia benchmarkdatasetforhydrogencombustion
AT levenitai benchmarkdatasetforhydrogencombustion
AT headgordonmartin benchmarkdatasetforhydrogencombustion
AT headgordonteresa benchmarkdatasetforhydrogencombustion