Cargando…

THz emission from Fe/Pt spintronic emitters with L1(0)-FePt alloyed interface

Recent developments in nanomagnetism and spintronics have enabled the use of ultrafast spin physics for terahertz (THz) emission. Spintronic THz emitters, consisting of ferromagnetic (FM)/non-magnetic (NM) thin film heterostructures, have demonstrated impressive properties for the use in THz spectro...

Descripción completa

Detalles Bibliográficos
Autores principales: Scheuer, Laura, Ruhwedel, Moritz, Karfaridis, Dimitrios, Vasileiadis, Isaak G., Sokoluk, Dominik, Torosyan, Garik, Vourlias, George, Dimitrakopoulos, George P., Rahm, Marco, Hillebrands, Burkard, Kehagias, Thomas, Beigang, René, Papaioannou, Evangelos Th.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114522/
https://www.ncbi.nlm.nih.gov/pubmed/35602944
http://dx.doi.org/10.1016/j.isci.2022.104319
Descripción
Sumario:Recent developments in nanomagnetism and spintronics have enabled the use of ultrafast spin physics for terahertz (THz) emission. Spintronic THz emitters, consisting of ferromagnetic (FM)/non-magnetic (NM) thin film heterostructures, have demonstrated impressive properties for the use in THz spectroscopy and have great potential in scientific and industrial applications. In this work, we focus on the impact of the FM/NM interface on the THz emission by investigating Fe/Pt bilayers with engineered interfaces. In particular, we intentionally modify the Fe/Pt interface by inserting an ordered L1(0)-FePt alloy interlayer. Subsequently, we establish that a Fe/L1(0)-FePt (2 nm)/Pt configuration is significantly superior to a Fe/Pt bilayer structure, regarding THz emission amplitude. The latter depends on the extent of alloying on either side of the interface. The unique trilayer structure opens new perspectives in terms of material choices for the next generation of spintronic THz emitters.