Cargando…

Ultra-parallel label-free optophysiology of neural activity

The electrical activity of neurons has a spatiotemporal footprint that spans three orders of magnitude. Traditional electrophysiology lacks the spatial throughput to image the activity of an entire neural network; besides, labeled optical imaging using voltage-sensitive dyes and tracking Ca(2+) ion...

Descripción completa

Detalles Bibliográficos
Autores principales: Iyer, Rishyashring R., Liu, Yuan-Zhi, Renteria, Carlos A., Tibble, Brian E., Choi, Honggu, Žurauskas, Mantas, Boppart, Stephen A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114528/
https://www.ncbi.nlm.nih.gov/pubmed/35602935
http://dx.doi.org/10.1016/j.isci.2022.104307
_version_ 1784709795750608896
author Iyer, Rishyashring R.
Liu, Yuan-Zhi
Renteria, Carlos A.
Tibble, Brian E.
Choi, Honggu
Žurauskas, Mantas
Boppart, Stephen A.
author_facet Iyer, Rishyashring R.
Liu, Yuan-Zhi
Renteria, Carlos A.
Tibble, Brian E.
Choi, Honggu
Žurauskas, Mantas
Boppart, Stephen A.
author_sort Iyer, Rishyashring R.
collection PubMed
description The electrical activity of neurons has a spatiotemporal footprint that spans three orders of magnitude. Traditional electrophysiology lacks the spatial throughput to image the activity of an entire neural network; besides, labeled optical imaging using voltage-sensitive dyes and tracking Ca(2+) ion dynamics lack the versatility and speed to capture fast-spiking activity, respectively. We present a label-free optical imaging technique to image the changes to the optical path length and the local birefringence caused by neural activity, at 4,000 Hz, across a 200 × 200 μm(2) region, and with micron-scale spatial resolution and 300-pm displacement sensitivity using Superfast Polarization-sensitive Off-axis Full-field Optical Coherence Microscopy (SPoOF OCM). The undulations in the optical responses from mammalian neuronal activity were matched with field-potential electrophysiology measurements and validated with channel blockers. By directly tracking the widefield neural activity at millisecond timescales and micrometer resolution, SPoOF OCM provides a framework to progress from low-throughput electrophysiology to high-throughput ultra-parallel label-free optophysiology.
format Online
Article
Text
id pubmed-9114528
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Elsevier
record_format MEDLINE/PubMed
spelling pubmed-91145282022-05-19 Ultra-parallel label-free optophysiology of neural activity Iyer, Rishyashring R. Liu, Yuan-Zhi Renteria, Carlos A. Tibble, Brian E. Choi, Honggu Žurauskas, Mantas Boppart, Stephen A. iScience Article The electrical activity of neurons has a spatiotemporal footprint that spans three orders of magnitude. Traditional electrophysiology lacks the spatial throughput to image the activity of an entire neural network; besides, labeled optical imaging using voltage-sensitive dyes and tracking Ca(2+) ion dynamics lack the versatility and speed to capture fast-spiking activity, respectively. We present a label-free optical imaging technique to image the changes to the optical path length and the local birefringence caused by neural activity, at 4,000 Hz, across a 200 × 200 μm(2) region, and with micron-scale spatial resolution and 300-pm displacement sensitivity using Superfast Polarization-sensitive Off-axis Full-field Optical Coherence Microscopy (SPoOF OCM). The undulations in the optical responses from mammalian neuronal activity were matched with field-potential electrophysiology measurements and validated with channel blockers. By directly tracking the widefield neural activity at millisecond timescales and micrometer resolution, SPoOF OCM provides a framework to progress from low-throughput electrophysiology to high-throughput ultra-parallel label-free optophysiology. Elsevier 2022-04-27 /pmc/articles/PMC9114528/ /pubmed/35602935 http://dx.doi.org/10.1016/j.isci.2022.104307 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Iyer, Rishyashring R.
Liu, Yuan-Zhi
Renteria, Carlos A.
Tibble, Brian E.
Choi, Honggu
Žurauskas, Mantas
Boppart, Stephen A.
Ultra-parallel label-free optophysiology of neural activity
title Ultra-parallel label-free optophysiology of neural activity
title_full Ultra-parallel label-free optophysiology of neural activity
title_fullStr Ultra-parallel label-free optophysiology of neural activity
title_full_unstemmed Ultra-parallel label-free optophysiology of neural activity
title_short Ultra-parallel label-free optophysiology of neural activity
title_sort ultra-parallel label-free optophysiology of neural activity
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114528/
https://www.ncbi.nlm.nih.gov/pubmed/35602935
http://dx.doi.org/10.1016/j.isci.2022.104307
work_keys_str_mv AT iyerrishyashringr ultraparallellabelfreeoptophysiologyofneuralactivity
AT liuyuanzhi ultraparallellabelfreeoptophysiologyofneuralactivity
AT renteriacarlosa ultraparallellabelfreeoptophysiologyofneuralactivity
AT tibblebriane ultraparallellabelfreeoptophysiologyofneuralactivity
AT choihonggu ultraparallellabelfreeoptophysiologyofneuralactivity
AT zurauskasmantas ultraparallellabelfreeoptophysiologyofneuralactivity
AT boppartstephena ultraparallellabelfreeoptophysiologyofneuralactivity