Cargando…
Multi-Model Adaptation Learning With Possibilistic Clustering Assumption for EEG-Based Emotion Recognition
In machine learning community, graph-based semi-supervised learning (GSSL) approaches have attracted more extensive research due to their elegant mathematical formulation and good performance. However, one of the reasons affecting the performance of the GSSL method is that the training data and test...
Autores principales: | Dan, Yufang, Tao, Jianwen, Zhou, Di |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114636/ https://www.ncbi.nlm.nih.gov/pubmed/35600616 http://dx.doi.org/10.3389/fnins.2022.855421 |
Ejemplares similares
-
Possibilistic Clustering-Promoting Semi-Supervised Learning for EEG-Based Emotion Recognition
por: Dan, Yufang, et al.
Publicado: (2021) -
Possibilistic distribution distance metric: a robust domain adaptation learning method
por: Tao, Jianwen, et al.
Publicado: (2023) -
Multi-Source Co-adaptation for EEG-Based Emotion Recognition by Mining Correlation Information
por: Tao, Jianwen, et al.
Publicado: (2021) -
Robust Latent Multi-Source Adaptation for Encephalogram-Based Emotion Recognition
por: Tao, Jianwen, et al.
Publicado: (2022) -
Local domain generalization with low-rank constraint for EEG-based emotion recognition
por: Tao, Jianwen, et al.
Publicado: (2023)