Cargando…

Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review

The reduction of fluoride concentrations in water is one of many concerns. Adsorption is the most widely used technology for fluoride removal and the center to development of adsorption technology is the improvement of adsorbents. This review classifies the typical fluoride removal adsorbents into f...

Descripción completa

Detalles Bibliográficos
Autores principales: Wei, Yifei, Wang, Li, Li, Hanbing, Yan, Wei, Feng, Jiangtao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114667/
https://www.ncbi.nlm.nih.gov/pubmed/35601557
http://dx.doi.org/10.3389/fchem.2022.900660
_version_ 1784709829493784576
author Wei, Yifei
Wang, Li
Li, Hanbing
Yan, Wei
Feng, Jiangtao
author_facet Wei, Yifei
Wang, Li
Li, Hanbing
Yan, Wei
Feng, Jiangtao
author_sort Wei, Yifei
collection PubMed
description The reduction of fluoride concentrations in water is one of many concerns. Adsorption is the most widely used technology for fluoride removal and the center to development of adsorption technology is the improvement of adsorbents. This review classifies the typical fluoride removal adsorbents into four types: metal oxides/hydroxides, biopolymers, carbon-based, and other adsorbents. The exploitation of new materials and the synthesis of composite materials are two ways of developing new adsorbents. In comparison to the discovery of novel adsorbents for fluoride adsorption, research into the composite synthesis of different types of conventional adsorbents has proliferated in recent years. The traditional adsorbents used the earliest, metal oxides, can act as active centers in a wide range of applications for modifying and compounding with other types of adsorbents. This study emphasizes reviewing the research on fluoride removal by composite adsorbents synthesized from different types of metal-modified materials. Seven factors were compared in terms of material characterization, initial fluoride concentration, adsorbent dose, pH, temperature, reaction time, and maximum adsorption capacity. The modification of composite adsorbents is facile and the synergistic effect of the different types of adsorbents significantly improves fluoride adsorption capacity. Metal composite adsorbents are synthesized by facile coprecipitation, hydrothermal, or impregnation modification methods. The adsorption mechanisms involve electrostatic attraction, ion exchange, complexation, and hydrogen bonding. The fluoride adsorption capacity of composite adsorbents has generally improved, indicating that most modifications are successful and have application prospects. However, to achieve significant breakthroughs in practical applications, numerous issues such as cost, separation/regeneration performance, and safety still need to be considered.
format Online
Article
Text
id pubmed-9114667
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-91146672022-05-19 Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review Wei, Yifei Wang, Li Li, Hanbing Yan, Wei Feng, Jiangtao Front Chem Chemistry The reduction of fluoride concentrations in water is one of many concerns. Adsorption is the most widely used technology for fluoride removal and the center to development of adsorption technology is the improvement of adsorbents. This review classifies the typical fluoride removal adsorbents into four types: metal oxides/hydroxides, biopolymers, carbon-based, and other adsorbents. The exploitation of new materials and the synthesis of composite materials are two ways of developing new adsorbents. In comparison to the discovery of novel adsorbents for fluoride adsorption, research into the composite synthesis of different types of conventional adsorbents has proliferated in recent years. The traditional adsorbents used the earliest, metal oxides, can act as active centers in a wide range of applications for modifying and compounding with other types of adsorbents. This study emphasizes reviewing the research on fluoride removal by composite adsorbents synthesized from different types of metal-modified materials. Seven factors were compared in terms of material characterization, initial fluoride concentration, adsorbent dose, pH, temperature, reaction time, and maximum adsorption capacity. The modification of composite adsorbents is facile and the synergistic effect of the different types of adsorbents significantly improves fluoride adsorption capacity. Metal composite adsorbents are synthesized by facile coprecipitation, hydrothermal, or impregnation modification methods. The adsorption mechanisms involve electrostatic attraction, ion exchange, complexation, and hydrogen bonding. The fluoride adsorption capacity of composite adsorbents has generally improved, indicating that most modifications are successful and have application prospects. However, to achieve significant breakthroughs in practical applications, numerous issues such as cost, separation/regeneration performance, and safety still need to be considered. Frontiers Media S.A. 2022-05-04 /pmc/articles/PMC9114667/ /pubmed/35601557 http://dx.doi.org/10.3389/fchem.2022.900660 Text en Copyright © 2022 Wei, Wang, Li, Yan and Feng. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Chemistry
Wei, Yifei
Wang, Li
Li, Hanbing
Yan, Wei
Feng, Jiangtao
Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review
title Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review
title_full Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review
title_fullStr Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review
title_full_unstemmed Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review
title_short Synergistic Fluoride Adsorption by Composite Adsorbents Synthesized From Different Types of Materials—A Review
title_sort synergistic fluoride adsorption by composite adsorbents synthesized from different types of materials—a review
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114667/
https://www.ncbi.nlm.nih.gov/pubmed/35601557
http://dx.doi.org/10.3389/fchem.2022.900660
work_keys_str_mv AT weiyifei synergisticfluorideadsorptionbycompositeadsorbentssynthesizedfromdifferenttypesofmaterialsareview
AT wangli synergisticfluorideadsorptionbycompositeadsorbentssynthesizedfromdifferenttypesofmaterialsareview
AT lihanbing synergisticfluorideadsorptionbycompositeadsorbentssynthesizedfromdifferenttypesofmaterialsareview
AT yanwei synergisticfluorideadsorptionbycompositeadsorbentssynthesizedfromdifferenttypesofmaterialsareview
AT fengjiangtao synergisticfluorideadsorptionbycompositeadsorbentssynthesizedfromdifferenttypesofmaterialsareview