Cargando…
Improving the Accuracy of Ensemble Machine Learning Classification Models Using a Novel Bit-Fusion Algorithm for Healthcare AI Systems
Healthcare AI systems exclusively employ classification models for disease detection. However, with the recent research advances into this arena, it has been observed that single classification models have achieved limited accuracy in some cases. Employing fusion of multiple classifiers outputs into...
Autores principales: | Mishra, Sashikala, Shaw, Kailash, Mishra, Debahuti, Patil, Shruti, Kotecha, Ketan, Kumar, Satish, Bajaj, Simi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114677/ https://www.ncbi.nlm.nih.gov/pubmed/35602150 http://dx.doi.org/10.3389/fpubh.2022.858282 |
Ejemplares similares
-
Imbalanced ECG signal-based heart disease classification using ensemble machine learning technique
por: Rath, Adyasha, et al.
Publicado: (2022) -
Explainable AI for Bearing Fault Prognosis Using Deep Learning Techniques
por: Sanakkayala, Deva Chaitanya, et al.
Publicado: (2022) -
Data augmentation using Variational Autoencoders for improvement of respiratory disease classification
por: Saldanha, Jane, et al.
Publicado: (2022) -
Kids’ Emotion Recognition Using Various Deep-Learning Models with Explainable AI
por: Rathod, Manish, et al.
Publicado: (2022) -
A COVID-19 X-ray image classification model based on an enhanced convolutional neural network and hill climbing algorithms
por: Pradhan, Ashwini Kumar, et al.
Publicado: (2022)