Cargando…
3DCoop: An approach for computational inference of cell-type-specific transcriptional regulators cooperation in 3D chromatin
Precise identification of context-specific transcriptional regulators (TRs) cooperation facilitates the understanding of complex gene regulation. However, previous methods are highly reliant on the availability of ChIPped TRs. Here, we provide a protocol for running 3DCoop, a pipeline for computatio...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114683/ https://www.ncbi.nlm.nih.gov/pubmed/35600920 http://dx.doi.org/10.1016/j.xpro.2022.101382 |
Sumario: | Precise identification of context-specific transcriptional regulators (TRs) cooperation facilitates the understanding of complex gene regulation. However, previous methods are highly reliant on the availability of ChIPped TRs. Here, we provide a protocol for running 3DCoop, a pipeline for computational inference of cell type-specific TR cooperation in 3D chromatin by integrating TR motifs, open chromatin profiles, gene expression, and chromatin loops. 3DCoop provides a feasible solution to study the potential interplay among TRs across multiple human or mouse tissue/cell types. For complete details on the use and execution of this protocol, please refer to Yi et al. (2021). |
---|