Cargando…
An investigation and comparison of machine learning approaches for intrusion detection in IoMT network
Internet of Medical Things (IoMT) is network of interconnected medical devices (smart watches, pace makers, prosthetics, glucometer, etc.), software applications, and health systems and services. IoMT has successfully addressed many old healthcare problems. But it comes with its drawbacks essentiall...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9114823/ https://www.ncbi.nlm.nih.gov/pubmed/35601090 http://dx.doi.org/10.1007/s11227-022-04568-3 |
Sumario: | Internet of Medical Things (IoMT) is network of interconnected medical devices (smart watches, pace makers, prosthetics, glucometer, etc.), software applications, and health systems and services. IoMT has successfully addressed many old healthcare problems. But it comes with its drawbacks essentially with patient’s information privacy and security related issues that comes from IoMT architecture. Using obsolete systems can bring security vulnerabilities and draw attacker’s attention emphasizing the need for effective solution to secure and protect the data traffic in IoMT network. Recently, intrusion detection system (IDS) is regarded as an essential security solution for protecting IoMT network. In the past decades, machines learning (ML) algorithms have demonstrated breakthrough results in the field of intrusion detection. Notwithstanding, to our knowledge, there is no work that investigates the power of machines learning algorithms for intrusion detection in IoMT network. This paper aims to fill this gap of knowledge investigating the application of different ML algorithms for intrusion detection in IoMT network. The investigation analysis includes ML algorithms such as K-nearest neighbor, Naïve Bayes, support vector machine, artificial neural network and decision tree. The benchmark dataset, Bot-IoT which is publicly available with comprehensive set of attacks was used to train and test the effectiveness of all ML models considered for investigation. Also, we used comprehensive set of evaluation metrics to compare the power of ML algorithms with regard to their detection accuracy for intrusion in IoMT networks. The outcome of the analysis provides a promising path to identify the best the machine learning approach can be used for building effective IDS that can safeguard IoMT network against malicious activities. |
---|