Cargando…
Real-world analysis of manual editing of deep learning contouring in the thorax region
BACKGROUND AND PURPOSE: User-adjustments after deep-learning (DL) contouring in radiotherapy were evaluated to get insight in real-world editing during clinical practice. This study assessed the amount, type and spatial regions of editing of auto-contouring for organs-at-risk (OARs) in routine clini...
Autores principales: | Vaassen, Femke, Boukerroui, Djamal, Looney, Padraig, Canters, Richard, Verhoeven, Karolien, Peeters, Stephanie, Lubken, Indra, Mannens, Jolein, Gooding, Mark J., van Elmpt, Wouter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115320/ https://www.ncbi.nlm.nih.gov/pubmed/35602549 http://dx.doi.org/10.1016/j.phro.2022.04.008 |
Ejemplares similares
-
Treatment plan quality assessment for radiotherapy of rectal cancer patients using prediction of organ-at-risk dose metrics
por: Vaniqui, Ana, et al.
Publicado: (2020) -
Assessment of manual adjustment performed in clinical practice following deep learning contouring for head and neck organs at risk in radiotherapy
por: Brouwer, Charlotte L., et al.
Publicado: (2020) -
Treatment planning and 4D robust evaluation strategy for proton therapy of lung tumors with large motion amplitude
por: Taasti, Vicki Trier, et al.
Publicado: (2021) -
Clinical implementation and validation of an automated adaptive workflow for proton therapy
por: Taasti, Vicki Trier, et al.
Publicado: (2022) -
Multicenter comparison of measures for quantitative evaluation of contouring in radiotherapy
por: Gooding, Mark J., et al.
Publicado: (2022)