Cargando…

A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium

This study was designed to investigate the regulatory effect of hyaluronic acid (HA)—coating silk fibroin (SF) nanofibers during epithelialization of urinary tract for urethral regeneration. The obtained electrospun biomimetic tubular HA‐SF nanofiber scaffold is composed of a dense inner layer and a...

Descripción completa

Detalles Bibliográficos
Autores principales: Niu, Yuqing, Galluzzi, Massimiliano, Deng, Fuming, Zhao, Zhang, Fu, Ming, Su, Liang, Sun, Weitang, Jia, Wei, Xia, Huimin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115696/
https://www.ncbi.nlm.nih.gov/pubmed/35600655
http://dx.doi.org/10.1002/btm2.10268
_version_ 1784709974159523840
author Niu, Yuqing
Galluzzi, Massimiliano
Deng, Fuming
Zhao, Zhang
Fu, Ming
Su, Liang
Sun, Weitang
Jia, Wei
Xia, Huimin
author_facet Niu, Yuqing
Galluzzi, Massimiliano
Deng, Fuming
Zhao, Zhang
Fu, Ming
Su, Liang
Sun, Weitang
Jia, Wei
Xia, Huimin
author_sort Niu, Yuqing
collection PubMed
description This study was designed to investigate the regulatory effect of hyaluronic acid (HA)—coating silk fibroin (SF) nanofibers during epithelialization of urinary tract for urethral regeneration. The obtained electrospun biomimetic tubular HA‐SF nanofiber scaffold is composed of a dense inner layer and a porous outer layer in order to mimic adhesion and cavernous layers of the native tissue, respectively. A thin layer of HA‐gel coating was fixed in the inner wall to provide SF nanofibers with a dense and smooth surface nano‐topography and higher hydrophilicity. Compared with pure SF nanofibers, HA‐SF nanofibers significantly promoted the adhesion, growth, and proliferation of primary urothelial cells, and up‐regulate the expression of uroplakin‐3 (terminal differentiation keratin protein in urothelium). Using the New Zealand male rabbit urethral injury model, the scaffold composed of tubular HA‐SF nanofibers could recruit lumen and myoepithelial cells from the adjacent area of the host, rapidly reconstructing the urothelial barrier in the wound area in order to keep the urinary tract unobstructed, thereby promoting luminal epithelialization, smooth muscle bundle structural remodeling, and capillary formation. Overall, the synergistic effects of nano‐topography and biophysical cues in a biomimetic scaffold design for effective endogenous regeneration.
format Online
Article
Text
id pubmed-9115696
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-91156962022-05-20 A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium Niu, Yuqing Galluzzi, Massimiliano Deng, Fuming Zhao, Zhang Fu, Ming Su, Liang Sun, Weitang Jia, Wei Xia, Huimin Bioeng Transl Med Research Articles This study was designed to investigate the regulatory effect of hyaluronic acid (HA)—coating silk fibroin (SF) nanofibers during epithelialization of urinary tract for urethral regeneration. The obtained electrospun biomimetic tubular HA‐SF nanofiber scaffold is composed of a dense inner layer and a porous outer layer in order to mimic adhesion and cavernous layers of the native tissue, respectively. A thin layer of HA‐gel coating was fixed in the inner wall to provide SF nanofibers with a dense and smooth surface nano‐topography and higher hydrophilicity. Compared with pure SF nanofibers, HA‐SF nanofibers significantly promoted the adhesion, growth, and proliferation of primary urothelial cells, and up‐regulate the expression of uroplakin‐3 (terminal differentiation keratin protein in urothelium). Using the New Zealand male rabbit urethral injury model, the scaffold composed of tubular HA‐SF nanofibers could recruit lumen and myoepithelial cells from the adjacent area of the host, rapidly reconstructing the urothelial barrier in the wound area in order to keep the urinary tract unobstructed, thereby promoting luminal epithelialization, smooth muscle bundle structural remodeling, and capillary formation. Overall, the synergistic effects of nano‐topography and biophysical cues in a biomimetic scaffold design for effective endogenous regeneration. John Wiley & Sons, Inc. 2021-11-18 /pmc/articles/PMC9115696/ /pubmed/35600655 http://dx.doi.org/10.1002/btm2.10268 Text en © 2021 The Authors. Bioengineering & Translational Medicine published by Wiley Periodicals LLC on behalf of American Institute of Chemical Engineers. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Niu, Yuqing
Galluzzi, Massimiliano
Deng, Fuming
Zhao, Zhang
Fu, Ming
Su, Liang
Sun, Weitang
Jia, Wei
Xia, Huimin
A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium
title A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium
title_full A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium
title_fullStr A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium
title_full_unstemmed A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium
title_short A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium
title_sort biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115696/
https://www.ncbi.nlm.nih.gov/pubmed/35600655
http://dx.doi.org/10.1002/btm2.10268
work_keys_str_mv AT niuyuqing abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT galluzzimassimiliano abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT dengfuming abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT zhaozhang abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT fuming abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT suliang abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT sunweitang abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT jiawei abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT xiahuimin abiomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT niuyuqing biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT galluzzimassimiliano biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT dengfuming biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT zhaozhang biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT fuming biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT suliang biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT sunweitang biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT jiawei biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium
AT xiahuimin biomimetichyaluronicacidsilkfibroinnanofiberscaffoldpromotingregenerationoftransectedurothelium