Cargando…

Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks

[Image: see text] A highly porous metal–organic framework DUT-48, isoreticular to DUT-49, is reported with a high surface area of 4560 m(2)·g(–1) and methane storage capacity up to 0.27 g·g(–1) (164 cm(3)·cm(–3)) at 6.5 MPa and 298 K. The flexibility of DUT-48 and DUT-49 under external and internal...

Descripción completa

Detalles Bibliográficos
Autores principales: Krause, Simon, Evans, Jack D., Bon, Volodymyr, Senkovska, Irena, Ehrling, Sebastian, Stoeck, Ulrich, Yot, Pascal G., Iacomi, Paul, Llewellyn, Philip, Maurin, Guillaume, Coudert, François-Xavier, Kaskel, Stefan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2018
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115760/
https://www.ncbi.nlm.nih.gov/pubmed/35601838
http://dx.doi.org/10.1021/acs.jpcc.8b04549
_version_ 1784709988926619648
author Krause, Simon
Evans, Jack D.
Bon, Volodymyr
Senkovska, Irena
Ehrling, Sebastian
Stoeck, Ulrich
Yot, Pascal G.
Iacomi, Paul
Llewellyn, Philip
Maurin, Guillaume
Coudert, François-Xavier
Kaskel, Stefan
author_facet Krause, Simon
Evans, Jack D.
Bon, Volodymyr
Senkovska, Irena
Ehrling, Sebastian
Stoeck, Ulrich
Yot, Pascal G.
Iacomi, Paul
Llewellyn, Philip
Maurin, Guillaume
Coudert, François-Xavier
Kaskel, Stefan
author_sort Krause, Simon
collection PubMed
description [Image: see text] A highly porous metal–organic framework DUT-48, isoreticular to DUT-49, is reported with a high surface area of 4560 m(2)·g(–1) and methane storage capacity up to 0.27 g·g(–1) (164 cm(3)·cm(–3)) at 6.5 MPa and 298 K. The flexibility of DUT-48 and DUT-49 under external and internal (adsorption-induced) pressure is analyzed and rationalized using a combination of advanced experimental and computational techniques. While both networks undergo a contraction by mechanical pressure, only DUT-49 shows adsorption-induced structural transitions and negative gas adsorption of n-butane and nitrogen. This adsorption behavior was analyzed by microcalorimetry measurements and molecular simulations to provide an explanation for the lack of adsorption-induced breathing in DUT-48. It was revealed that for DUT-48, a significantly lower adsorption enthalpy difference and a higher framework stiffness prevent adsorption-induced structural transitions and negative gas adsorption. The mechanical behavior of both DUT-48 and DUT-49 was further analyzed by mercury porosimetry experiments and molecular simulations. Both materials exhibit large volume changes under hydrostatic compression, demonstrating noteworthy potential as shock absorbers with unprecedented high work energies.
format Online
Article
Text
id pubmed-9115760
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-91157602022-05-19 Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks Krause, Simon Evans, Jack D. Bon, Volodymyr Senkovska, Irena Ehrling, Sebastian Stoeck, Ulrich Yot, Pascal G. Iacomi, Paul Llewellyn, Philip Maurin, Guillaume Coudert, François-Xavier Kaskel, Stefan J Phys Chem C Nanomater Interfaces [Image: see text] A highly porous metal–organic framework DUT-48, isoreticular to DUT-49, is reported with a high surface area of 4560 m(2)·g(–1) and methane storage capacity up to 0.27 g·g(–1) (164 cm(3)·cm(–3)) at 6.5 MPa and 298 K. The flexibility of DUT-48 and DUT-49 under external and internal (adsorption-induced) pressure is analyzed and rationalized using a combination of advanced experimental and computational techniques. While both networks undergo a contraction by mechanical pressure, only DUT-49 shows adsorption-induced structural transitions and negative gas adsorption of n-butane and nitrogen. This adsorption behavior was analyzed by microcalorimetry measurements and molecular simulations to provide an explanation for the lack of adsorption-induced breathing in DUT-48. It was revealed that for DUT-48, a significantly lower adsorption enthalpy difference and a higher framework stiffness prevent adsorption-induced structural transitions and negative gas adsorption. The mechanical behavior of both DUT-48 and DUT-49 was further analyzed by mercury porosimetry experiments and molecular simulations. Both materials exhibit large volume changes under hydrostatic compression, demonstrating noteworthy potential as shock absorbers with unprecedented high work energies. American Chemical Society 2018-07-25 2018-08-23 /pmc/articles/PMC9115760/ /pubmed/35601838 http://dx.doi.org/10.1021/acs.jpcc.8b04549 Text en https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Krause, Simon
Evans, Jack D.
Bon, Volodymyr
Senkovska, Irena
Ehrling, Sebastian
Stoeck, Ulrich
Yot, Pascal G.
Iacomi, Paul
Llewellyn, Philip
Maurin, Guillaume
Coudert, François-Xavier
Kaskel, Stefan
Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks
title Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks
title_full Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks
title_fullStr Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks
title_full_unstemmed Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks
title_short Adsorption Contraction Mechanics: Understanding Breathing Energetics in Isoreticular Metal–Organic Frameworks
title_sort adsorption contraction mechanics: understanding breathing energetics in isoreticular metal–organic frameworks
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115760/
https://www.ncbi.nlm.nih.gov/pubmed/35601838
http://dx.doi.org/10.1021/acs.jpcc.8b04549
work_keys_str_mv AT krausesimon adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT evansjackd adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT bonvolodymyr adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT senkovskairena adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT ehrlingsebastian adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT stoeckulrich adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT yotpascalg adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT iacomipaul adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT llewellynphilip adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT mauringuillaume adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT coudertfrancoisxavier adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks
AT kaskelstefan adsorptioncontractionmechanicsunderstandingbreathingenergeticsinisoreticularmetalorganicframeworks