Cargando…
A Dynamic Nomogram to Identify Patients at High Risk of Poor Outcome in Stroke Patients with Chronic Kidney Disease
BACKGROUND AND PURPOSE: Predicting poor outcome for stroke patients with chronic kidney disease (CKD) in clinical practice is difficult. There are no tools available to use for predicting poor outcome in these patients. We aimed to construct and validate a dynamic nomogram to identify CKD–stroke pat...
Autores principales: | Wang, Fusang, Zheng, Xiaohan, Zhang, Juan, Jiang, Fuping, Chen, Nihong, Xu, Mengyi, Wu, Yuezhang, Zhou, Junshan, Cui, Xiaoli, Zou, Jianjun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115835/ https://www.ncbi.nlm.nih.gov/pubmed/35601241 http://dx.doi.org/10.2147/CIA.S352641 |
Ejemplares similares
-
Dynamic Prediction of Mechanical Thrombectomy Outcome for Acute Ischemic Stroke Patients Using Machine Learning
por: Hu, Yixing, et al.
Publicado: (2022) -
A SCANO Nomogram for Individualized Prediction of the Probability of 1-Year Unfavorable Outcomes in Chinese Acute Ischemic Stroke Patients
por: Li, Xiang, et al.
Publicado: (2020) -
Corrigendum: A SCANO Nomogram for Individualized Prediction of the Probability of 1-Year Unfavorable Outcomes in Chinese Acute Ischemic Stroke Patients
por: Li, Xiang, et al.
Publicado: (2020) -
Prediction-Driven Decision Support for Patients With Mild Stroke: A Model Based on Machine Learning Algorithms
por: Lin, Xinping, et al.
Publicado: (2021) -
Machine learning to predict futile recanalization of large vessel occlusion before and after endovascular thrombectomy
por: Lin, Xinping, et al.
Publicado: (2022)