Cargando…
An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3
N‐acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant‐specific Lysin Motif Receptor‐Like Kinases (LysM‐RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo‐chitooligosaccharides (LCOs) produced during r...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115844/ https://www.ncbi.nlm.nih.gov/pubmed/35634776 http://dx.doi.org/10.1002/pro.4327 |
_version_ | 1784710003654918144 |
---|---|
author | Bouchiba, Younes Esque, Jérémy Cottret, Ludovic Maréchaux, Maude Gaston, Mégane Gasciolli, Virginie Keller, Jean Nouwen, Nico Gully, Djamel Arrighi, Jean‐François Gough, Clare Lefebvre, Benoit Barbe, Sophie Bono, Jean‐Jacques |
author_facet | Bouchiba, Younes Esque, Jérémy Cottret, Ludovic Maréchaux, Maude Gaston, Mégane Gasciolli, Virginie Keller, Jean Nouwen, Nico Gully, Djamel Arrighi, Jean‐François Gough, Clare Lefebvre, Benoit Barbe, Sophie Bono, Jean‐Jacques |
author_sort | Bouchiba, Younes |
collection | PubMed |
description | N‐acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant‐specific Lysin Motif Receptor‐Like Kinases (LysM‐RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo‐chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen‐fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM‐RLK LYR3 (MtLYR3) as a specific LCO‐binding protein. We also showed that the absence of LCO binding to LYR3 of the non‐mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site‐directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3‐LysM3 by those of MtLYR3‐LysM3 allowed the recovery of high‐affinity LCO binding in experimental radioligand‐binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern. |
format | Online Article Text |
id | pubmed-9115844 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley & Sons, Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-91158442022-05-20 An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3 Bouchiba, Younes Esque, Jérémy Cottret, Ludovic Maréchaux, Maude Gaston, Mégane Gasciolli, Virginie Keller, Jean Nouwen, Nico Gully, Djamel Arrighi, Jean‐François Gough, Clare Lefebvre, Benoit Barbe, Sophie Bono, Jean‐Jacques Protein Sci Full‐length Papers N‐acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant‐specific Lysin Motif Receptor‐Like Kinases (LysM‐RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo‐chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen‐fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM‐RLK LYR3 (MtLYR3) as a specific LCO‐binding protein. We also showed that the absence of LCO binding to LYR3 of the non‐mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site‐directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3‐LysM3 by those of MtLYR3‐LysM3 allowed the recovery of high‐affinity LCO binding in experimental radioligand‐binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern. John Wiley & Sons, Inc. 2022-05-18 2022-06 /pmc/articles/PMC9115844/ /pubmed/35634776 http://dx.doi.org/10.1002/pro.4327 Text en © 2022 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. |
spellingShingle | Full‐length Papers Bouchiba, Younes Esque, Jérémy Cottret, Ludovic Maréchaux, Maude Gaston, Mégane Gasciolli, Virginie Keller, Jean Nouwen, Nico Gully, Djamel Arrighi, Jean‐François Gough, Clare Lefebvre, Benoit Barbe, Sophie Bono, Jean‐Jacques An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3 |
title | An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3
|
title_full | An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3
|
title_fullStr | An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3
|
title_full_unstemmed | An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3
|
title_short | An integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase MtLYR3
|
title_sort | integrated approach reveals how lipo‐chitooligosaccharides interact with the lysin motif receptor‐like kinase mtlyr3 |
topic | Full‐length Papers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9115844/ https://www.ncbi.nlm.nih.gov/pubmed/35634776 http://dx.doi.org/10.1002/pro.4327 |
work_keys_str_mv | AT bouchibayounes anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT esquejeremy anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT cottretludovic anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT marechauxmaude anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT gastonmegane anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT gasciollivirginie anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT kellerjean anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT nouwennico anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT gullydjamel anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT arrighijeanfrancois anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT goughclare anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT lefebvrebenoit anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT barbesophie anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT bonojeanjacques anintegratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT bouchibayounes integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT esquejeremy integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT cottretludovic integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT marechauxmaude integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT gastonmegane integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT gasciollivirginie integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT kellerjean integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT nouwennico integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT gullydjamel integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT arrighijeanfrancois integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT goughclare integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT lefebvrebenoit integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT barbesophie integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 AT bonojeanjacques integratedapproachrevealshowlipochitooligosaccharidesinteractwiththelysinmotifreceptorlikekinasemtlyr3 |