Cargando…

Unheeded SARS-CoV-2 proteins? A deep look into negative-sense RNA

SARS-CoV-2 is a novel positive-sense single-stranded RNA virus from the Coronaviridae family (genus Betacoronavirus), which has been established as causing the COVID-19 pandemic. The genome of SARS-CoV-2 is one of the largest among known RNA viruses, comprising of at least 26 known protein-coding lo...

Descripción completa

Detalles Bibliográficos
Autores principales: Bartas, Martin, Volná, Adriana, Beaudoin, Christopher A, Poulsen, Ebbe Toftgaard, Červeň, Jiří, Brázda, Václav, Špunda, Vladimír, Blundell, Tom L, Pečinka, Petr
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116216/
https://www.ncbi.nlm.nih.gov/pubmed/35229157
http://dx.doi.org/10.1093/bib/bbac045
Descripción
Sumario:SARS-CoV-2 is a novel positive-sense single-stranded RNA virus from the Coronaviridae family (genus Betacoronavirus), which has been established as causing the COVID-19 pandemic. The genome of SARS-CoV-2 is one of the largest among known RNA viruses, comprising of at least 26 known protein-coding loci. Studies thus far have outlined the coding capacity of the positive-sense strand of the SARS-CoV-2 genome, which can be used directly for protein translation. However, it has been recently shown that transcribed negative-sense viral RNA intermediates that arise during viral genome replication from positive-sense viruses can also code for proteins. No studies have yet explored the potential for negative-sense SARS-CoV-2 RNA intermediates to contain protein-coding loci. Thus, using sequence and structure-based bioinformatics methodologies, we have investigated the presence and validity of putative negative-sense ORFs (nsORFs) in the SARS-CoV-2 genome. Nine nsORFs were discovered to contain strong eukaryotic translation initiation signals and high codon adaptability scores, and several of the nsORFs were predicted to interact with RNA-binding proteins. Evolutionary conservation analyses indicated that some of the nsORFs are deeply conserved among related coronaviruses. Three-dimensional protein modeling revealed the presence of higher order folding among all putative SARS-CoV-2 nsORFs, and subsequent structural mimicry analyses suggest similarity of the nsORFs to DNA/RNA-binding proteins and proteins involved in immune signaling pathways. Altogether, these results suggest the potential existence of still undescribed SARS-CoV-2 proteins, which may play an important role in the viral lifecycle and COVID-19 pathogenesis.