Cargando…
Deep learning based on biologically interpretable genome representation predicts two types of human adaptation of SARS-CoV-2 variants
Explosively emerging SARS-CoV-2 variants challenge current nomenclature schemes based on genetic diversity and biological significance. Genomic composition-based machine learning methods have recently performed well in identifying phenotype–genotype relationships. We introduced a framework involving...
Autores principales: | Li, Jing, Wu, Ya-Nan, Zhang, Sen, Kang, Xiao-Ping, Jiang, Tao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116219/ https://www.ncbi.nlm.nih.gov/pubmed/35233612 http://dx.doi.org/10.1093/bib/bbac036 |
Ejemplares similares
-
Detecting SARS-CoV-2 and its variant strains with a full genome tiling array
por: Jiang, Limin, et al.
Publicado: (2021) -
XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data
por: Withnell, Eloise, et al.
Publicado: (2021) -
Ensemble modeling with machine learning and deep learning to provide interpretable generalized rules for classifying CNS drugs with high prediction power
por: Yu, Tzu-Hui, et al.
Publicado: (2021) -
NCAE: data-driven representations using a deep network-coherent DNA methylation autoencoder identify robust disease and risk factor signatures
por: Martínez-Enguita, David, et al.
Publicado: (2023) -
Coronavirus GenBrowser for monitoring the transmission and evolution of SARS-CoV-2
por: Yu, Dalang, et al.
Publicado: (2022)