Cargando…
Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial
BACKGROUND: Vitamin D promotes bone and muscle growth in non-athletes, suggesting supplementation may be ergogenic in athletes. Our primary aim was to determine if modest Vitamin D supplementation augments favorable body composition changes (increased bone and lean mass and decreased fat mass) and p...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Routledge
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116404/ https://www.ncbi.nlm.nih.gov/pubmed/35599918 http://dx.doi.org/10.1080/15502783.2022.2046444 |
_version_ | 1784710106160562176 |
---|---|
author | Hew-Butler, Tamara Aprik, Carrie Byrd, Brigid Sabourin, Jordan VanSumeren, Matthew Smith-Hale, Valerie Blow, Andrew |
author_facet | Hew-Butler, Tamara Aprik, Carrie Byrd, Brigid Sabourin, Jordan VanSumeren, Matthew Smith-Hale, Valerie Blow, Andrew |
author_sort | Hew-Butler, Tamara |
collection | PubMed |
description | BACKGROUND: Vitamin D promotes bone and muscle growth in non-athletes, suggesting supplementation may be ergogenic in athletes. Our primary aim was to determine if modest Vitamin D supplementation augments favorable body composition changes (increased bone and lean mass and decreased fat mass) and performance in collegiate basketball players following 12 weeks of standardized training. METHODS: Members of a men’s and women’s NCAA D1 Basketball team were recruited. Volunteers were randomized to receive either a weekly 4000 IU Vitamin D(3) supplement (D3) or placebo (P) over 12 weeks of standardized pre-season strength training. Pre- and post-measurements included 1) serum 25-hydroxy vitamin D (25(OH)D); 2) body composition variables (total body lean, fat, and bone mass) using dual-energy X-ray absorptiometry (DXA) scans and 3) vertical jump test to assess peak power output. Dietary intake was assessed using Food Frequency questionnaires. Main outcome measures included changes (∆: post-intervention minus pre-intervention) in 25(OH)D, body composition, and performance. RESULTS: Eighteen of the 23 players completed the trial (8 females/10 males). Eight received the placebo (20 ± 1 years; 3 females) while ten received Vitamin D(3) (20 ± 2 years; 5 females). Weekly Vitamin D(3) supplementation induced non-significant increases (∆) in 25(OH)D (2.6 ± 7.2 vs. −3.5 ± 5.3 ng/mL; p = 0.06), total body bone mineral content (BMC) (73.1 ± 62.5 vs. 84.1 ± 46.5 g; p = 0.68), and total body lean mass (2803.9 ± 1655.4 vs. 4474.5 ± 11,389.8 g; p = 0.03), plus a non-significant change in body fat (−0.5 ± 0.8 vs. −1.1 ± 1.2%; p = 0.19) (Vitamin D(3) vs. placebo supplementation groups, respectively). Pre 25(OH)D correlated with both Δ total fat mass (g) (r = 0.65; p = 0.003) and Δ total body fat% (r = 0.56; p = 0.02). No differences were noted in peak power output ∆ between the D3 vs. P group (−127.4 ± 335.4 vs. 50.9 ± 9 W; NS). Participants in the D3 group ingested significantly fewer total calories (−526.2 ± 583.9 vs. −10.0 ± 400 kcals; p = 0.02) than participants in the P group. CONCLUSIONS: Modest (~517 IU/day) Vitamin D(3) supplementation did not enhance favorable changes in total body composition or performance, over 3 months of training, in collegiate basketball players. Weight training provides a robust training stimulus for bone and lean mass accrual, which likely predominates over isolated supplement use with adequate caloric intakes. |
format | Online Article Text |
id | pubmed-9116404 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Routledge |
record_format | MEDLINE/PubMed |
spelling | pubmed-91164042022-05-19 Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial Hew-Butler, Tamara Aprik, Carrie Byrd, Brigid Sabourin, Jordan VanSumeren, Matthew Smith-Hale, Valerie Blow, Andrew J Int Soc Sports Nutr Research Article BACKGROUND: Vitamin D promotes bone and muscle growth in non-athletes, suggesting supplementation may be ergogenic in athletes. Our primary aim was to determine if modest Vitamin D supplementation augments favorable body composition changes (increased bone and lean mass and decreased fat mass) and performance in collegiate basketball players following 12 weeks of standardized training. METHODS: Members of a men’s and women’s NCAA D1 Basketball team were recruited. Volunteers were randomized to receive either a weekly 4000 IU Vitamin D(3) supplement (D3) or placebo (P) over 12 weeks of standardized pre-season strength training. Pre- and post-measurements included 1) serum 25-hydroxy vitamin D (25(OH)D); 2) body composition variables (total body lean, fat, and bone mass) using dual-energy X-ray absorptiometry (DXA) scans and 3) vertical jump test to assess peak power output. Dietary intake was assessed using Food Frequency questionnaires. Main outcome measures included changes (∆: post-intervention minus pre-intervention) in 25(OH)D, body composition, and performance. RESULTS: Eighteen of the 23 players completed the trial (8 females/10 males). Eight received the placebo (20 ± 1 years; 3 females) while ten received Vitamin D(3) (20 ± 2 years; 5 females). Weekly Vitamin D(3) supplementation induced non-significant increases (∆) in 25(OH)D (2.6 ± 7.2 vs. −3.5 ± 5.3 ng/mL; p = 0.06), total body bone mineral content (BMC) (73.1 ± 62.5 vs. 84.1 ± 46.5 g; p = 0.68), and total body lean mass (2803.9 ± 1655.4 vs. 4474.5 ± 11,389.8 g; p = 0.03), plus a non-significant change in body fat (−0.5 ± 0.8 vs. −1.1 ± 1.2%; p = 0.19) (Vitamin D(3) vs. placebo supplementation groups, respectively). Pre 25(OH)D correlated with both Δ total fat mass (g) (r = 0.65; p = 0.003) and Δ total body fat% (r = 0.56; p = 0.02). No differences were noted in peak power output ∆ between the D3 vs. P group (−127.4 ± 335.4 vs. 50.9 ± 9 W; NS). Participants in the D3 group ingested significantly fewer total calories (−526.2 ± 583.9 vs. −10.0 ± 400 kcals; p = 0.02) than participants in the P group. CONCLUSIONS: Modest (~517 IU/day) Vitamin D(3) supplementation did not enhance favorable changes in total body composition or performance, over 3 months of training, in collegiate basketball players. Weight training provides a robust training stimulus for bone and lean mass accrual, which likely predominates over isolated supplement use with adequate caloric intakes. Routledge 2022-03-22 /pmc/articles/PMC9116404/ /pubmed/35599918 http://dx.doi.org/10.1080/15502783.2022.2046444 Text en © 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Hew-Butler, Tamara Aprik, Carrie Byrd, Brigid Sabourin, Jordan VanSumeren, Matthew Smith-Hale, Valerie Blow, Andrew Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial |
title | Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial |
title_full | Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial |
title_fullStr | Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial |
title_full_unstemmed | Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial |
title_short | Vitamin D supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial |
title_sort | vitamin d supplementation and body composition changes in collegiate basketball players: a 12-week randomized control trial |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116404/ https://www.ncbi.nlm.nih.gov/pubmed/35599918 http://dx.doi.org/10.1080/15502783.2022.2046444 |
work_keys_str_mv | AT hewbutlertamara vitamindsupplementationandbodycompositionchangesincollegiatebasketballplayersa12weekrandomizedcontroltrial AT aprikcarrie vitamindsupplementationandbodycompositionchangesincollegiatebasketballplayersa12weekrandomizedcontroltrial AT byrdbrigid vitamindsupplementationandbodycompositionchangesincollegiatebasketballplayersa12weekrandomizedcontroltrial AT sabourinjordan vitamindsupplementationandbodycompositionchangesincollegiatebasketballplayersa12weekrandomizedcontroltrial AT vansumerenmatthew vitamindsupplementationandbodycompositionchangesincollegiatebasketballplayersa12weekrandomizedcontroltrial AT smithhalevalerie vitamindsupplementationandbodycompositionchangesincollegiatebasketballplayersa12weekrandomizedcontroltrial AT blowandrew vitamindsupplementationandbodycompositionchangesincollegiatebasketballplayersa12weekrandomizedcontroltrial |