Cargando…
Clustering compositional data using Dirichlet mixture model
A model-based clustering method for compositional data is explored in this article. Most methods for compositional data analysis require some kind of transformation. The proposed method builds a mixture model using Dirichlet distribution which works with the unit sum constraint. The mixture model us...
Autores principales: | Pal, Samyajoy, Heumann, Christian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116644/ https://www.ncbi.nlm.nih.gov/pubmed/35584127 http://dx.doi.org/10.1371/journal.pone.0268438 |
Ejemplares similares
-
ChromDMM: a Dirichlet-multinomial mixture model for clustering heterogeneous epigenetic data
por: Osmala, Maria, et al.
Publicado: (2022) -
Dirichlet process mixture models for single-cell RNA-seq clustering
por: Adossa, Nigatu A., et al.
Publicado: (2022) -
Dirichlet Multinomial Mixtures: Generative Models for Microbial Metagenomics
por: Holmes, Ian, et al.
Publicado: (2012) -
Genome-scale MicroRNA target prediction through clustering with Dirichlet process mixture model
por: Hakguder, Zeynep, et al.
Publicado: (2018) -
Kernel Analysis Based on Dirichlet Processes Mixture Models
por: Tian, Jinkai, et al.
Publicado: (2019)