Cargando…
Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children?
Clinical symptoms and inflammatory markers cannot reliably distinguish the etiology of CAP, and chest radiographs have abundant information related with CAP. Hence, we developed a context-fusion convolution neural network (CNN) to explore the application of chest radiographs to distinguish the etiol...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116701/ https://www.ncbi.nlm.nih.gov/pubmed/35585465 http://dx.doi.org/10.1007/s10278-021-00543-1 |
_version_ | 1784710166533373952 |
---|---|
author | Hu, Shasha Zhu, Yongbei Dong, Di Wang, Bei Zhou, Zuofu Wang, Chi Tian, Jie Peng, Yun |
author_facet | Hu, Shasha Zhu, Yongbei Dong, Di Wang, Bei Zhou, Zuofu Wang, Chi Tian, Jie Peng, Yun |
author_sort | Hu, Shasha |
collection | PubMed |
description | Clinical symptoms and inflammatory markers cannot reliably distinguish the etiology of CAP, and chest radiographs have abundant information related with CAP. Hence, we developed a context-fusion convolution neural network (CNN) to explore the application of chest radiographs to distinguish the etiology of CAP in children. This retrospective study included 1769 cases of pediatric pneumonia (viral pneumonia, n = 487; bacterial pneumonia, n = 496; and mycoplasma pneumonia, n = 786). The chest radiographs of the first examination, C-reactive protein (CRP), and white blood cell (WBC) were collected for analysis. All patients were stochastically divided into training, validation, and test cohorts in a 7:1:2 ratio. Automatic lung segmentation and hand-crafted pneumonia lesion segmentation were performed, from which three image-based models including a full-lung model, a local-lesion model, and a context-fusion model were built; two clinical characteristics were used to build a clinical model, while a logistic regression model combined the best CNN model and two clinical characteristics. Our experiments showed that the context-fusion model which integrated the features of the full-lung and local-lesion had better performance than the full-lung model and local-lesion model. The context-fusion model had area under curves of 0.86, 0.88, and 0.93 in identifying viral, bacterial, and mycoplasma pneumonia on the test cohort respectively. The addition of clinical characteristics to the context-fusion model obtained slight improvement. Mycoplasma pneumonia was more easily identified compared with the other two types. Using chest radiographs, we developed a context-fusion CNN model with good performance for noninvasively diagnosing the etiology of community-acquired pneumonia in children, which would help improve early diagnosis and treatment. |
format | Online Article Text |
id | pubmed-9116701 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Springer International Publishing |
record_format | MEDLINE/PubMed |
spelling | pubmed-91167012022-05-19 Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children? Hu, Shasha Zhu, Yongbei Dong, Di Wang, Bei Zhou, Zuofu Wang, Chi Tian, Jie Peng, Yun J Digit Imaging Original Paper Clinical symptoms and inflammatory markers cannot reliably distinguish the etiology of CAP, and chest radiographs have abundant information related with CAP. Hence, we developed a context-fusion convolution neural network (CNN) to explore the application of chest radiographs to distinguish the etiology of CAP in children. This retrospective study included 1769 cases of pediatric pneumonia (viral pneumonia, n = 487; bacterial pneumonia, n = 496; and mycoplasma pneumonia, n = 786). The chest radiographs of the first examination, C-reactive protein (CRP), and white blood cell (WBC) were collected for analysis. All patients were stochastically divided into training, validation, and test cohorts in a 7:1:2 ratio. Automatic lung segmentation and hand-crafted pneumonia lesion segmentation were performed, from which three image-based models including a full-lung model, a local-lesion model, and a context-fusion model were built; two clinical characteristics were used to build a clinical model, while a logistic regression model combined the best CNN model and two clinical characteristics. Our experiments showed that the context-fusion model which integrated the features of the full-lung and local-lesion had better performance than the full-lung model and local-lesion model. The context-fusion model had area under curves of 0.86, 0.88, and 0.93 in identifying viral, bacterial, and mycoplasma pneumonia on the test cohort respectively. The addition of clinical characteristics to the context-fusion model obtained slight improvement. Mycoplasma pneumonia was more easily identified compared with the other two types. Using chest radiographs, we developed a context-fusion CNN model with good performance for noninvasively diagnosing the etiology of community-acquired pneumonia in children, which would help improve early diagnosis and treatment. Springer International Publishing 2022-05-18 2022-10 /pmc/articles/PMC9116701/ /pubmed/35585465 http://dx.doi.org/10.1007/s10278-021-00543-1 Text en © The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine 2022 |
spellingShingle | Original Paper Hu, Shasha Zhu, Yongbei Dong, Di Wang, Bei Zhou, Zuofu Wang, Chi Tian, Jie Peng, Yun Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children? |
title | Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children? |
title_full | Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children? |
title_fullStr | Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children? |
title_full_unstemmed | Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children? |
title_short | Chest Radiographs Using a Context-Fusion Convolution Neural Network (CNN): Can It Distinguish the Etiology of Community-Acquired Pneumonia (CAP) in Children? |
title_sort | chest radiographs using a context-fusion convolution neural network (cnn): can it distinguish the etiology of community-acquired pneumonia (cap) in children? |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116701/ https://www.ncbi.nlm.nih.gov/pubmed/35585465 http://dx.doi.org/10.1007/s10278-021-00543-1 |
work_keys_str_mv | AT hushasha chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren AT zhuyongbei chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren AT dongdi chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren AT wangbei chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren AT zhouzuofu chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren AT wangchi chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren AT tianjie chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren AT pengyun chestradiographsusingacontextfusionconvolutionneuralnetworkcnncanitdistinguishtheetiologyofcommunityacquiredpneumoniacapinchildren |