Cargando…

A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment

Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewi...

Descripción completa

Detalles Bibliográficos
Autores principales: Tergemina, Emmanuel, Elfarargi, Ahmed F., Flis, Paulina, Fulgione, Andrea, Göktay, Mehmet, Neto, Célia, Scholle, Marleen, Flood, Pádraic J., Xerri, Sophie-Asako, Zicola, Johan, Döring, Nina, Dinis, Herculano, Krämer, Ute, Salt, David E., Hancock, Angela M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116884/
https://www.ncbi.nlm.nih.gov/pubmed/35584228
http://dx.doi.org/10.1126/sciadv.abm9385
_version_ 1784710208191201280
author Tergemina, Emmanuel
Elfarargi, Ahmed F.
Flis, Paulina
Fulgione, Andrea
Göktay, Mehmet
Neto, Célia
Scholle, Marleen
Flood, Pádraic J.
Xerri, Sophie-Asako
Zicola, Johan
Döring, Nina
Dinis, Herculano
Krämer, Ute
Salt, David E.
Hancock, Angela M.
author_facet Tergemina, Emmanuel
Elfarargi, Ahmed F.
Flis, Paulina
Fulgione, Andrea
Göktay, Mehmet
Neto, Célia
Scholle, Marleen
Flood, Pádraic J.
Xerri, Sophie-Asako
Zicola, Johan
Döring, Nina
Dinis, Herculano
Krämer, Ute
Salt, David E.
Hancock, Angela M.
author_sort Tergemina, Emmanuel
collection PubMed
description Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time.
format Online
Article
Text
id pubmed-9116884
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-91168842022-06-01 A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment Tergemina, Emmanuel Elfarargi, Ahmed F. Flis, Paulina Fulgione, Andrea Göktay, Mehmet Neto, Célia Scholle, Marleen Flood, Pádraic J. Xerri, Sophie-Asako Zicola, Johan Döring, Nina Dinis, Herculano Krämer, Ute Salt, David E. Hancock, Angela M. Sci Adv Biomedicine and Life Sciences Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time. American Association for the Advancement of Science 2022-05-18 /pmc/articles/PMC9116884/ /pubmed/35584228 http://dx.doi.org/10.1126/sciadv.abm9385 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Tergemina, Emmanuel
Elfarargi, Ahmed F.
Flis, Paulina
Fulgione, Andrea
Göktay, Mehmet
Neto, Célia
Scholle, Marleen
Flood, Pádraic J.
Xerri, Sophie-Asako
Zicola, Johan
Döring, Nina
Dinis, Herculano
Krämer, Ute
Salt, David E.
Hancock, Angela M.
A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
title A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
title_full A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
title_fullStr A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
title_full_unstemmed A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
title_short A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
title_sort two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116884/
https://www.ncbi.nlm.nih.gov/pubmed/35584228
http://dx.doi.org/10.1126/sciadv.abm9385
work_keys_str_mv AT tergeminaemmanuel atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT elfarargiahmedf atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT flispaulina atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT fulgioneandrea atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT goktaymehmet atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT netocelia atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT schollemarleen atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT floodpadraicj atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT xerrisophieasako atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT zicolajohan atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT doringnina atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT dinisherculano atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT kramerute atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT saltdavide atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT hancockangelam atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT tergeminaemmanuel twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT elfarargiahmedf twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT flispaulina twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT fulgioneandrea twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT goktaymehmet twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT netocelia twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT schollemarleen twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT floodpadraicj twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT xerrisophieasako twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT zicolajohan twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT doringnina twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT dinisherculano twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT kramerute twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT saltdavide twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment
AT hancockangelam twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment