Cargando…
A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment
Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewi...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116884/ https://www.ncbi.nlm.nih.gov/pubmed/35584228 http://dx.doi.org/10.1126/sciadv.abm9385 |
_version_ | 1784710208191201280 |
---|---|
author | Tergemina, Emmanuel Elfarargi, Ahmed F. Flis, Paulina Fulgione, Andrea Göktay, Mehmet Neto, Célia Scholle, Marleen Flood, Pádraic J. Xerri, Sophie-Asako Zicola, Johan Döring, Nina Dinis, Herculano Krämer, Ute Salt, David E. Hancock, Angela M. |
author_facet | Tergemina, Emmanuel Elfarargi, Ahmed F. Flis, Paulina Fulgione, Andrea Göktay, Mehmet Neto, Célia Scholle, Marleen Flood, Pádraic J. Xerri, Sophie-Asako Zicola, Johan Döring, Nina Dinis, Herculano Krämer, Ute Salt, David E. Hancock, Angela M. |
author_sort | Tergemina, Emmanuel |
collection | PubMed |
description | Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time. |
format | Online Article Text |
id | pubmed-9116884 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Association for the Advancement of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-91168842022-06-01 A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment Tergemina, Emmanuel Elfarargi, Ahmed F. Flis, Paulina Fulgione, Andrea Göktay, Mehmet Neto, Célia Scholle, Marleen Flood, Pádraic J. Xerri, Sophie-Asako Zicola, Johan Döring, Nina Dinis, Herculano Krämer, Ute Salt, David E. Hancock, Angela M. Sci Adv Biomedicine and Life Sciences Most well-characterized cases of adaptation involve single genetic loci. Theory suggests that multilocus adaptive walks should be common, but these are challenging to identify in natural populations. Here, we combine trait mapping with population genetic modeling to show that a two-step process rewired nutrient homeostasis in a population of Arabidopsis as it colonized the base of an active stratovolcano characterized by extremely low soil manganese (Mn). First, a variant that disrupted the primary iron (Fe) uptake transporter gene (IRT1) swept quickly to fixation in a hard selective sweep, increasing Mn but limiting Fe in the leaves. Second, multiple independent tandem duplications occurred at NRAMP1 and together rose to near fixation in the island population, compensating the loss of IRT1 by improving Fe homeostasis. This study provides a clear case of a multilocus adaptive walk and reveals how genetic variants reshaped a phenotype and spread over space and time. American Association for the Advancement of Science 2022-05-18 /pmc/articles/PMC9116884/ /pubmed/35584228 http://dx.doi.org/10.1126/sciadv.abm9385 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution License 4.0 (CC BY). https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution license (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Biomedicine and Life Sciences Tergemina, Emmanuel Elfarargi, Ahmed F. Flis, Paulina Fulgione, Andrea Göktay, Mehmet Neto, Célia Scholle, Marleen Flood, Pádraic J. Xerri, Sophie-Asako Zicola, Johan Döring, Nina Dinis, Herculano Krämer, Ute Salt, David E. Hancock, Angela M. A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment |
title | A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment |
title_full | A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment |
title_fullStr | A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment |
title_full_unstemmed | A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment |
title_short | A two-step adaptive walk rewires nutrient transport in a challenging edaphic environment |
title_sort | two-step adaptive walk rewires nutrient transport in a challenging edaphic environment |
topic | Biomedicine and Life Sciences |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9116884/ https://www.ncbi.nlm.nih.gov/pubmed/35584228 http://dx.doi.org/10.1126/sciadv.abm9385 |
work_keys_str_mv | AT tergeminaemmanuel atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT elfarargiahmedf atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT flispaulina atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT fulgioneandrea atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT goktaymehmet atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT netocelia atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT schollemarleen atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT floodpadraicj atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT xerrisophieasako atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT zicolajohan atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT doringnina atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT dinisherculano atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT kramerute atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT saltdavide atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT hancockangelam atwostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT tergeminaemmanuel twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT elfarargiahmedf twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT flispaulina twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT fulgioneandrea twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT goktaymehmet twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT netocelia twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT schollemarleen twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT floodpadraicj twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT xerrisophieasako twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT zicolajohan twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT doringnina twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT dinisherculano twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT kramerute twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT saltdavide twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment AT hancockangelam twostepadaptivewalkrewiresnutrienttransportinachallengingedaphicenvironment |