Cargando…
Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway
BACKGROUND: Glioma is a common tumor that originated from the brain, and molecular targeted therapy is one of the important treatment modalities of glioma. Apatinib is a small-molecule tyrosine kinase inhibitor, which is widely used for the treatment of glioma. However, the underlying molecular mech...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117021/ https://www.ncbi.nlm.nih.gov/pubmed/35602105 http://dx.doi.org/10.1155/2022/9925919 |
_version_ | 1784710237800890368 |
---|---|
author | Xia, Liang Gong, Mingjie Zou, Yangfan Wang, Zeng Wu, Bin Zhang, Shuyuan Li, Liwen Jin, Kai Sun, Caixing |
author_facet | Xia, Liang Gong, Mingjie Zou, Yangfan Wang, Zeng Wu, Bin Zhang, Shuyuan Li, Liwen Jin, Kai Sun, Caixing |
author_sort | Xia, Liang |
collection | PubMed |
description | BACKGROUND: Glioma is a common tumor that originated from the brain, and molecular targeted therapy is one of the important treatment modalities of glioma. Apatinib is a small-molecule tyrosine kinase inhibitor, which is widely used for the treatment of glioma. However, the underlying molecular mechanism has remained elusive. Recently, emerging evidence has proved the remarkable anticancer effects of ferroptosis. In this study, a new ferroptosis-related mechanism of apatinib inhibiting proliferation of glioma cells was investigated, which facilitated further study on inhibitory effects of apatinib on cancer cells. METHODS: Human glioma U251 and U87 cell lines and normal astrocytes were treated with apatinib. Ferroptosis, cell cycle, apoptosis, and proliferation were determined. A nude mouse xenograft model was constructed, and tumor growth rate was detected. Tumor tissues were collected to estimate ferroptosis levels and to identify the relevant pathways after treatment with apatinib. RESULTS: Treatment with apatinib could induce loss of cell viability of glioma cells, but not of normal astrocytes, through eliciting ferroptosis in vitro and in vivo. It was also revealed that apatinib triggered ferroptosis of glioma cells via inhibiting the activation of nuclear factor erythroid 2-related factor 2/vascular endothelial growth factor receptor 2 (Nrf2/VEFGR2) pathway. The overexpression of Nrf2 rescued the therapeutic effects of apatinib. CONCLUSION: Our study proved that treatment with apatinib could restrain proliferation of glioma cells through induction of ferroptosis via inhibiting the activation of VEGFR2/Nrf2/Keap1 pathway. Overexpression of Nrf2 could counteract the induction of ferroptosis by apatinib. |
format | Online Article Text |
id | pubmed-9117021 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-91170212022-05-19 Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway Xia, Liang Gong, Mingjie Zou, Yangfan Wang, Zeng Wu, Bin Zhang, Shuyuan Li, Liwen Jin, Kai Sun, Caixing Oxid Med Cell Longev Research Article BACKGROUND: Glioma is a common tumor that originated from the brain, and molecular targeted therapy is one of the important treatment modalities of glioma. Apatinib is a small-molecule tyrosine kinase inhibitor, which is widely used for the treatment of glioma. However, the underlying molecular mechanism has remained elusive. Recently, emerging evidence has proved the remarkable anticancer effects of ferroptosis. In this study, a new ferroptosis-related mechanism of apatinib inhibiting proliferation of glioma cells was investigated, which facilitated further study on inhibitory effects of apatinib on cancer cells. METHODS: Human glioma U251 and U87 cell lines and normal astrocytes were treated with apatinib. Ferroptosis, cell cycle, apoptosis, and proliferation were determined. A nude mouse xenograft model was constructed, and tumor growth rate was detected. Tumor tissues were collected to estimate ferroptosis levels and to identify the relevant pathways after treatment with apatinib. RESULTS: Treatment with apatinib could induce loss of cell viability of glioma cells, but not of normal astrocytes, through eliciting ferroptosis in vitro and in vivo. It was also revealed that apatinib triggered ferroptosis of glioma cells via inhibiting the activation of nuclear factor erythroid 2-related factor 2/vascular endothelial growth factor receptor 2 (Nrf2/VEFGR2) pathway. The overexpression of Nrf2 rescued the therapeutic effects of apatinib. CONCLUSION: Our study proved that treatment with apatinib could restrain proliferation of glioma cells through induction of ferroptosis via inhibiting the activation of VEGFR2/Nrf2/Keap1 pathway. Overexpression of Nrf2 could counteract the induction of ferroptosis by apatinib. Hindawi 2022-05-11 /pmc/articles/PMC9117021/ /pubmed/35602105 http://dx.doi.org/10.1155/2022/9925919 Text en Copyright © 2022 Liang Xia et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Xia, Liang Gong, Mingjie Zou, Yangfan Wang, Zeng Wu, Bin Zhang, Shuyuan Li, Liwen Jin, Kai Sun, Caixing Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway |
title | Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway |
title_full | Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway |
title_fullStr | Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway |
title_full_unstemmed | Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway |
title_short | Apatinib Induces Ferroptosis of Glioma Cells through Modulation of the VEGFR2/Nrf2 Pathway |
title_sort | apatinib induces ferroptosis of glioma cells through modulation of the vegfr2/nrf2 pathway |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117021/ https://www.ncbi.nlm.nih.gov/pubmed/35602105 http://dx.doi.org/10.1155/2022/9925919 |
work_keys_str_mv | AT xialiang apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT gongmingjie apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT zouyangfan apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT wangzeng apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT wubin apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT zhangshuyuan apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT liliwen apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT jinkai apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway AT suncaixing apatinibinducesferroptosisofgliomacellsthroughmodulationofthevegfr2nrf2pathway |