Cargando…

Circ_0001998 Regulates the Proliferation, Invasion, and Apoptosis of Lung Adenocarcinoma via Sponging miR-145

Circular RNA (circRNA) is considered an important regulator of cancer. Circ_0001998 is a newly discovered circRNA and its role in lung adenocarcinoma (LUAD) remains obscure and requires further study. The expression levels of circ_0001998 and miR-145 in LUAD were predicted by bioinformatics analysis...

Descripción completa

Detalles Bibliográficos
Autores principales: Shi, Qiang, Ju, Jian-Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117027/
https://www.ncbi.nlm.nih.gov/pubmed/35600959
http://dx.doi.org/10.1155/2022/6446150
Descripción
Sumario:Circular RNA (circRNA) is considered an important regulator of cancer. Circ_0001998 is a newly discovered circRNA and its role in lung adenocarcinoma (LUAD) remains obscure and requires further study. The expression levels of circ_0001998 and miR-145 in LUAD were predicted by bioinformatics analysis and then verified by qRT-PCR in the LUAD cell lines. CCK-8, clone formation, EdU assay, and flow cytometry were applied to determine the effects of silencing circ_0001998 on the viability, proliferation, and apoptosis of LUAD cells. The target relationship between circ_0001998 and miR-145 was predicted by bioinformatics analysis and verified by a luciferase activity experiment. The effect of circ_0001998/miR-145 axis on the viability, proliferation, and apoptosis of LUAD cells was verified by the rescue experiment. Circ_0001998 was upregulated in LUAD, and silencing circ_0001998 suppressed viability, proliferation, and invasion of LUAD cells. The target gene of circ_0001998, miR-145, was downregulated in LUAD, and the low expression of miR-145 indicated a poor prognosis. The effect of silencing circ_0001998 on the biological function of LUAD cells was reversed by the miR-145 inhibitor. Circ_0001998 regulates the proliferation, invasion, and apoptosis of LUAD via sponging miR-145.