Cargando…
Prediction of Urban Street Public Space Art Design Indicators Based on Deep Convolutional Neural Network
This paper analyzes and studies the structure and parameters of the VGGNet network model and selects the most commonly used and efficient VGG-16 as the prototype of the improved model. A multiscale sampling layer is added at the end of the VGG-16 convolution part so that the model can input images o...
Autores principales: | Yu, Shanshan, Wang, Hao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117065/ https://www.ncbi.nlm.nih.gov/pubmed/35602640 http://dx.doi.org/10.1155/2022/5508623 |
Ejemplares similares
-
Optimization Design of Street Public Space Layout on Account of Internet of Things and Deep Learning
por: Yu, Shanshan, et al.
Publicado: (2022) -
Quantifying the usage of small public spaces using deep convolutional neural network
por: Hou, Jingxuan, et al.
Publicado: (2020) -
Analysing successful public spaces in an urban street network using data from the social networks Foursquare and Twitter
por: Agryzkov, Taras, et al.
Publicado: (2016) -
Predicting enhancers with deep convolutional neural networks
por: Min, Xu, et al.
Publicado: (2017) -
Art Image Processing and Color Objective Evaluation Based on Multicolor Space Convolutional Neural Network
por: Jing, Liang, et al.
Publicado: (2021)