Cargando…

Achieving high molecular alignment and orientation for CH[Formula: see text] F through manipulation of rotational states with varying optical and THz laser pulse parameters

Increasing interest in the fields of high-harmonics generation, laser-induced chemical reactions, and molecular imaging of gaseous targets demands high molecular “alignment” and “orientation” (A&O). In this work, we examine the critical role of different pulse parameters on the field-free A&...

Descripción completa

Detalles Bibliográficos
Autores principales: Chordiya, Kalyani, Simkó, Irén, Szidarovszky, Tamás, Upadhyay Kahaly, Mousumi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117237/
https://www.ncbi.nlm.nih.gov/pubmed/35585150
http://dx.doi.org/10.1038/s41598-022-10326-5
Descripción
Sumario:Increasing interest in the fields of high-harmonics generation, laser-induced chemical reactions, and molecular imaging of gaseous targets demands high molecular “alignment” and “orientation” (A&O). In this work, we examine the critical role of different pulse parameters on the field-free A&O dynamics of the CH[Formula: see text] F molecule, and identify experimentally feasible optical and THz range laser parameters that ensure maximal A&O for such molecules. Herein, apart from rotational temperature, we investigate effects of varying pulse parameters such as, pulse duration, intensity, frequency, and carrier envelop phase (CEP). By analyzing the interplay between laser pulse parameters and the resulting rotational population distribution, the origin of specific A&O dynamics was addressed. We could identify two qualitatively different A&O behaviors and revealed their connection with the pulse parameters and the population of excited rotational states. We report here the highest alignment of [Formula: see text] and orientation of [Formula: see text] for CH[Formula: see text] F molecule at 2 K using a single pulse. Our study should be useful to understand different aspects of laser-induced unidirectional rotation in heteronuclear molecules, and in understanding routes to tune/enhance A&O in laboratory conditions for advanced applications.