Cargando…
Prediction of future healthcare expenses of patients from chest radiographs using deep learning: a pilot study
Our objective was to develop deep learning models with chest radiograph data to predict healthcare costs and classify top-50% spenders. 21,872 frontal chest radiographs were retrospectively collected from 19,524 patients with at least 1-year spending data. Among the patients, 11,003 patients had 3 y...
Autores principales: | Sohn, Jae Ho, Chen, Yixin, Lituiev, Dmytro, Yang, Jaewon, Ordovas, Karen, Hadley, Dexter, Vu, Thienkhai H., Franc, Benjamin L., Seo, Youngho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117267/ https://www.ncbi.nlm.nih.gov/pubmed/35585177 http://dx.doi.org/10.1038/s41598-022-12551-4 |
Ejemplares similares
-
Automatic Labeling of Special Diagnostic Mammography Views from Images and DICOM Headers
por: Lituiev, Dmytro S., et al.
Publicado: (2018) -
High precision localization of pulmonary nodules on chest CT utilizing axial slice number labels
por: Chillakuru, Yeshwant Reddy, et al.
Publicado: (2021) -
Empowering study of breast cancer data with application of artificial intelligence technology: promises, challenges, and use cases
por: Panahiazar, Maryam, et al.
Publicado: (2021) -
Clinical language search algorithm from free-text: facilitating appropriate imaging
por: Chaudhari, Gunvant R., et al.
Publicado: (2022) -
Development and web deployment of an automated neuroradiology MRI protocoling tool with natural language processing
por: Chillakuru, Yeshwant Reddy, et al.
Publicado: (2021)