Cargando…

Ultrafast orbital tomography of a pentacene film using time-resolved momentum microscopy at a FEL

Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron mo...

Descripción completa

Detalles Bibliográficos
Autores principales: Baumgärtner, Kiana, Reuner, Marvin, Metzger, Christian, Kutnyakhov, Dmytro, Heber, Michael, Pressacco, Federico, Min, Chul-Hee, Peixoto, Thiago R. F., Reiser, Mario, Kim, Chan, Lu, Wei, Shayduk, Roman, Izquierdo, Manuel, Brenner, Günter, Roth, Friedrich, Schöll, Achim, Molodtsov, Serguei, Wurth, Wilfried, Reinert, Friedrich, Madsen, Anders, Popova-Gorelova, Daria, Scholz, Markus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117673/
https://www.ncbi.nlm.nih.gov/pubmed/35585096
http://dx.doi.org/10.1038/s41467-022-30404-6
Descripción
Sumario:Time-resolved momentum microscopy provides insight into the ultrafast interplay between structural and electronic dynamics. Here we extend orbital tomography into the time domain in combination with time-resolved momentum microscopy at a free-electron laser (FEL) to follow transient photoelectron momentum maps of excited states of a bilayer pentacene film on Ag(110). We use optical pump and FEL probe pulses by keeping FEL source conditions to minimize space charge effects and radiation damage. From the momentum microscopy signal, we obtain time-dependent momentum maps of the excited-state dynamics of both pentacene layers separately. In a combined experimental and theoretical study, we interpret the observed signal for the bottom layer as resulting from the charge redistribution between the molecule and the substrate induced by excitation. We identify that the dynamics of the top pentacene layer resembles excited-state molecular dynamics.