Cargando…
Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification
Hydrodynamic cavitation is an emerging intensification technology in water treatment or chemical processing, and Venturi-type cavitation reactors exhibit advantages for industrial-scale production. The effects of temperature on hydrodynamic cavitating flows are investigated to find the optimum react...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117695/ https://www.ncbi.nlm.nih.gov/pubmed/35580542 http://dx.doi.org/10.1016/j.ultsonch.2022.106035 |
_version_ | 1784710365968334848 |
---|---|
author | Ge, Mingming Sun, Chuanyu Zhang, Guangjian Coutier-Delgosha, Olivier Fan, Dixia |
author_facet | Ge, Mingming Sun, Chuanyu Zhang, Guangjian Coutier-Delgosha, Olivier Fan, Dixia |
author_sort | Ge, Mingming |
collection | PubMed |
description | Hydrodynamic cavitation is an emerging intensification technology in water treatment or chemical processing, and Venturi-type cavitation reactors exhibit advantages for industrial-scale production. The effects of temperature on hydrodynamic cavitating flows are investigated to find the optimum reaction conditions enhancing cavitating treatment intensity. Results show that the cavitation performance, including the cavitation intensity and cavitation unsteady behavior, is influenced by (1) cavitation number [Formula: see text] (the pressure difference affecting the vaporization process), (2) Reynolds number Re (the inertial/viscous ratio affecting the bubble size and liquid–vapor interface area), and (3) thermodynamic parameter [Formula: see text] (the thermal effect affecting the temperature drop). With increasing temperature, the cavitation length first increases and then decreases, with a cavitation intensity peak at the transition temperature of 58 °C. With the growth of cavitation extent, the cavity-shedding regimes tend to transition from the attached sheet cavity to the periodic cloud cavity, and the vapor volume fluctuating frequency decreases accordingly. A combined suppression parameter (CSP) is provided to predict that, with increasing CSP value, the cavitation intensity can be decreased. Recommendations are given that working under the low-CSP range (55–60 °C) could enhance the intensification of the cavitation process. |
format | Online Article Text |
id | pubmed-9117695 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-91176952022-05-20 Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification Ge, Mingming Sun, Chuanyu Zhang, Guangjian Coutier-Delgosha, Olivier Fan, Dixia Ultrason Sonochem Short Communication Hydrodynamic cavitation is an emerging intensification technology in water treatment or chemical processing, and Venturi-type cavitation reactors exhibit advantages for industrial-scale production. The effects of temperature on hydrodynamic cavitating flows are investigated to find the optimum reaction conditions enhancing cavitating treatment intensity. Results show that the cavitation performance, including the cavitation intensity and cavitation unsteady behavior, is influenced by (1) cavitation number [Formula: see text] (the pressure difference affecting the vaporization process), (2) Reynolds number Re (the inertial/viscous ratio affecting the bubble size and liquid–vapor interface area), and (3) thermodynamic parameter [Formula: see text] (the thermal effect affecting the temperature drop). With increasing temperature, the cavitation length first increases and then decreases, with a cavitation intensity peak at the transition temperature of 58 °C. With the growth of cavitation extent, the cavity-shedding regimes tend to transition from the attached sheet cavity to the periodic cloud cavity, and the vapor volume fluctuating frequency decreases accordingly. A combined suppression parameter (CSP) is provided to predict that, with increasing CSP value, the cavitation intensity can be decreased. Recommendations are given that working under the low-CSP range (55–60 °C) could enhance the intensification of the cavitation process. Elsevier 2022-05-13 /pmc/articles/PMC9117695/ /pubmed/35580542 http://dx.doi.org/10.1016/j.ultsonch.2022.106035 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Short Communication Ge, Mingming Sun, Chuanyu Zhang, Guangjian Coutier-Delgosha, Olivier Fan, Dixia Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification |
title | Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification |
title_full | Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification |
title_fullStr | Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification |
title_full_unstemmed | Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification |
title_short | Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification |
title_sort | combined suppression effects on hydrodynamic cavitation performance in venturi-type reactor for process intensification |
topic | Short Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117695/ https://www.ncbi.nlm.nih.gov/pubmed/35580542 http://dx.doi.org/10.1016/j.ultsonch.2022.106035 |
work_keys_str_mv | AT gemingming combinedsuppressioneffectsonhydrodynamiccavitationperformanceinventuritypereactorforprocessintensification AT sunchuanyu combinedsuppressioneffectsonhydrodynamiccavitationperformanceinventuritypereactorforprocessintensification AT zhangguangjian combinedsuppressioneffectsonhydrodynamiccavitationperformanceinventuritypereactorforprocessintensification AT coutierdelgoshaolivier combinedsuppressioneffectsonhydrodynamiccavitationperformanceinventuritypereactorforprocessintensification AT fandixia combinedsuppressioneffectsonhydrodynamiccavitationperformanceinventuritypereactorforprocessintensification |