Cargando…

Model verification tools: a computational framework for verification assessment of mechanistic agent-based models

BACKGROUND: Nowadays, the inception of computer modeling and simulation in life science is a matter of fact. This is one of the reasons why regulatory authorities are open in considering in silico trials evidence for the assessment of safeness and efficacy of medicinal products. In this context, mec...

Descripción completa

Detalles Bibliográficos
Autores principales: Russo, Giulia, Parasiliti Palumbo, Giuseppe Alessandro, Pennisi, Marzio, Pappalardo, Francesco
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117838/
https://www.ncbi.nlm.nih.gov/pubmed/35590242
http://dx.doi.org/10.1186/s12859-022-04684-0
Descripción
Sumario:BACKGROUND: Nowadays, the inception of computer modeling and simulation in life science is a matter of fact. This is one of the reasons why regulatory authorities are open in considering in silico trials evidence for the assessment of safeness and efficacy of medicinal products. In this context, mechanistic Agent-Based Models are increasingly used. Unfortunately, there is still a lack of consensus in the verification assessment of Agent-Based Models for regulatory approval needs. VV&UQ is an ASME standard specifically suited for the verification, validation, and uncertainty quantification of medical devices. However, it can also be adapted for the verification assessment of in silico trials for medicinal products. RESULTS: Here, we propose a set of automatic tools for the mechanistic Agent-Based Model verification assessment. As a working example, we applied the verification framework to an Agent-Based Model in silico trial used in the COVID-19 context. CONCLUSIONS: Using the described verification computational workflow allows researchers and practitioners to easily perform verification steps to prove Agent-Based Models robustness and correctness that provide strong evidence for further regulatory requirements.