Cargando…
Leveraging clinical data across healthcare institutions for continual learning of predictive risk models
The inherent flexibility of machine learning-based clinical predictive models to learn from episodes of patient care at a new institution (site-specific training) comes at the cost of performance degradation when applied to external patient cohorts. To exploit the full potential of cross-institution...
Autores principales: | Amrollahi, Fatemeh, Shashikumar, Supreeth P., Holder, Andre L., Nemati, Shamim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117839/ https://www.ncbi.nlm.nih.gov/pubmed/35590018 http://dx.doi.org/10.1038/s41598-022-12497-7 |
Ejemplares similares
-
Development & Deployment of a Real-time Healthcare Predictive Analytics Platform
por: Boussina, Aaron, et al.
Publicado: (2023) -
Predicting Hospital Readmission among Patients with Sepsis using Clinical and Wearable Data
por: Amrollahi, Fatemeh, et al.
Publicado: (2023) -
Prediction of Unplanned Hospital Readmission using Clinical and Longitudinal Wearable Sensor Features
por: Yhdego, Haben H., et al.
Publicado: (2023) -
Artificial intelligence sepsis prediction algorithm learns to say “I don’t know”
por: Shashikumar, Supreeth P., et al.
Publicado: (2021) -
Representation Learning and Spectral Clustering for the Development and External Validation of Dynamic Sepsis Phenotypes: Observational Cohort Study
por: Boussina, Aaron, et al.
Publicado: (2023)