Cargando…
Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo
Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117931/ https://www.ncbi.nlm.nih.gov/pubmed/35398040 http://dx.doi.org/10.1016/j.jlr.2022.100207 |
_version_ | 1784710414850850816 |
---|---|
author | Li, Yue Du, Yuwei Xu, Zhengqing He, Yuan Yao, Ran Jiang, Huiran Ju, Wen Qiao, Jianlin Xu, Kailin Liu, Tzu-Ming Zeng, Lingyu |
author_facet | Li, Yue Du, Yuwei Xu, Zhengqing He, Yuan Yao, Ran Jiang, Huiran Ju, Wen Qiao, Jianlin Xu, Kailin Liu, Tzu-Ming Zeng, Lingyu |
author_sort | Li, Yue |
collection | PubMed |
description | Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo. |
format | Online Article Text |
id | pubmed-9117931 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-91179312022-05-21 Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo Li, Yue Du, Yuwei Xu, Zhengqing He, Yuan Yao, Ran Jiang, Huiran Ju, Wen Qiao, Jianlin Xu, Kailin Liu, Tzu-Ming Zeng, Lingyu J Lipid Res Research Article Macrophages play pivotal roles in the maintenance of tissue homeostasis. However, the reactivation of macrophages toward proinflammatory states correlates with a plethora of inflammatory diseases, including atherosclerosis, obesity, neurodegeneration, and bone marrow (BM) failure syndromes. The lack of methods to reveal macrophage phenotype and function in vivo impedes the translational research of these diseases. Here, we found that proinflammatory macrophages accumulate intracellular lipid droplets (LDs) relative to resting or noninflammatory macrophages both in vitro and in vivo, indicating that LD accumulation serves as a structural biomarker for macrophage phenotyping. To realize the staining and imaging of macrophage LDs in vivo, we developed a fluorescent fatty acid analog-loaded poly(lactic-co-glycolic acid) nanoparticle to label macrophages in mice with high efficiency and specificity. Using these novel nanoparticles, we achieved in situ functional identification of single macrophages in BM, liver, lung, and adipose tissues under conditions of acute or chronic inflammation. Moreover, with this intravital imaging platform, we further realized in vivo phenotyping of individual macrophages in the calvarial BM of mice under systemic inflammation. In conclusion, we established an efficient in vivo LD labeling and imaging system for single macrophage phenotyping, which will aid in the development of diagnostics and therapeutic monitoring. Moreover, this method also provides new avenues for the study of lipid trafficking and dynamics in vivo. American Society for Biochemistry and Molecular Biology 2022-04-06 /pmc/articles/PMC9117931/ /pubmed/35398040 http://dx.doi.org/10.1016/j.jlr.2022.100207 Text en © 2022 The Authors https://creativecommons.org/licenses/by/4.0/This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Article Li, Yue Du, Yuwei Xu, Zhengqing He, Yuan Yao, Ran Jiang, Huiran Ju, Wen Qiao, Jianlin Xu, Kailin Liu, Tzu-Ming Zeng, Lingyu Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo |
title | Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo |
title_full | Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo |
title_fullStr | Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo |
title_full_unstemmed | Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo |
title_short | Intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo |
title_sort | intravital lipid droplet labeling and imaging reveals the phenotypes and functions of individual macrophages in vivo |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117931/ https://www.ncbi.nlm.nih.gov/pubmed/35398040 http://dx.doi.org/10.1016/j.jlr.2022.100207 |
work_keys_str_mv | AT liyue intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT duyuwei intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT xuzhengqing intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT heyuan intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT yaoran intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT jianghuiran intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT juwen intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT qiaojianlin intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT xukailin intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT liutzuming intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo AT zenglingyu intravitallipiddropletlabelingandimagingrevealsthephenotypesandfunctionsofindividualmacrophagesinvivo |