Cargando…
Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning
Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggreg...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117940/ https://www.ncbi.nlm.nih.gov/pubmed/35602121 http://dx.doi.org/10.1016/j.xinn.2022.100253 |
Sumario: | Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggregates into scalable, controllable, and affordable functional devices remains challenging. Printing is a promising additive manufacturing technology for fabricating devices from NP building blocks because of its capabilities for rapid prototyping and versatile multifunctional manufacturing. This paper reviews recent advances in NP patterning based on the combination of self-assembly and printing technologies (including two-, three-, and four-dimensional printing), introduces the basic characteristics of these methods, and discusses various fields of NP patterning applications. |
---|