Cargando…

Safety of two-dose COVID-19 vaccination (BNT162b2 and CoronaVac) in adults with cancer: a territory-wide cohort study

BACKGROUND: The World Health Organization has defined a list of adverse events of special interest (AESI) for safety surveillance of vaccines. AESI have not been adequately assessed following COVID-19 vaccination in patients with cancer contributing to vaccine hesitancy in this population. We aimed...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, Wei, Shami, Jessica J. P., Yan, Vincent K. C., Ye, Xuxiao, Blais, Joseph E., Li, Xue, Lee, Victor H. F., Chui, Celine S. L., Lai, Francisco T. T., Wan, Eric Y. F., Wong, Carlos K. H., Wong, Ian C. K., Chan, Esther W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9117990/
https://www.ncbi.nlm.nih.gov/pubmed/35590336
http://dx.doi.org/10.1186/s13045-022-01265-9
Descripción
Sumario:BACKGROUND: The World Health Organization has defined a list of adverse events of special interest (AESI) for safety surveillance of vaccines. AESI have not been adequately assessed following COVID-19 vaccination in patients with cancer contributing to vaccine hesitancy in this population. We aimed to evaluate the association between BNT162b2 and CoronaVac vaccines and the risk of AESI in adults with active cancer or a history of cancer. PATIENTS AND METHODS: We conducted a territory-wide cohort study using electronic health records managed by the Hong Kong Hospital Authority and vaccination records provided by the Department of Health. Patients with a cancer diagnosis between January 1, 2018, and September 30, 2021, were included and stratified into two cohorts: active cancer and history of cancer. Within each cohort, patients who received two doses of BNT162b2 or CoronaVac were 1:1 matched to unvaccinated patients using the propensity score. Cox proportional hazards regression was used to estimate hazard ratios (HR) and 95% confidence intervals (CIs) for AESI 28 days after the second vaccine dose. RESULTS: A total of 74,878 patients with cancer were included (vaccinated: 25,789 [34%]; unvaccinated: 49,089 [66%]). Among patients with active cancer, the incidence of AESI was 0.31 and 1.02 per 10,000 person-days with BNT162b2 versus unvaccinated patients and 0.13 and 0.88 per 10,000 person-days with CoronaVac versus unvaccinated patients. Among patients with history of cancer, the incidence was 0.55 and 0.89 per 10,000 person-days with BNT162b2 versus unvaccinated patients and 0.42 and 0.93 per 10,000 person-days with CoronaVac versus unvaccinated patients. Neither vaccine was associated with a higher risk of AESI for patients with active cancer (BNT162b2: HR 0.30, 95% CI 0.08–1.09; CoronaVac: 0.14, 95% CI 0.02–1.18) or patients with history of cancer (BNT162b2: 0.62, 95% CI 0.30–1.28; CoronaVac: 0.45, 95% CI 0.21–1.00). CONCLUSIONS: In this territory-wide cohort study of patients with cancer, the incidence of AESI following vaccination with two doses of either BNT162b2 or CoronaVac vaccines was low. The findings of this study can reassure clinicians and patients with cancer about the overall safety of BNT162b2 and CoronaVac in patients with cancer, which could increase the COVID-19 vaccination rate in this vulnerable group of patients. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13045-022-01265-9.