Cargando…
Evaluation of the Sensitivity of Metabolic Profiling by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical Oral Cavity Cancer Resections
[Image: see text] Radical resection for patients with oral cavity cancer remains challenging. Rapid evaporative ionization mass spectrometry (REIMS) of electrosurgical vapors has been reported for real-time classification of normal and tumor tissues for numerous surgical applications. However, the i...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118195/ https://www.ncbi.nlm.nih.gov/pubmed/35503862 http://dx.doi.org/10.1021/acs.analchem.1c03583 |
_version_ | 1784710462518067200 |
---|---|
author | Vaysse, Pierre-Maxence Demers, Imke van den Hout, Mari F. C. M. van de Worp, Wouter Anthony, Ian G. M. Baijens, Laura W. J. Tan, Bing I. Lacko, Martin Vaassen, Lauretta A. A. van Mierlo, Auke Langen, Ramon C. J. Speel, Ernst-Jan M. Heeren, Ron M. A. Porta Siegel, Tiffany Kremer, Bernd |
author_facet | Vaysse, Pierre-Maxence Demers, Imke van den Hout, Mari F. C. M. van de Worp, Wouter Anthony, Ian G. M. Baijens, Laura W. J. Tan, Bing I. Lacko, Martin Vaassen, Lauretta A. A. van Mierlo, Auke Langen, Ramon C. J. Speel, Ernst-Jan M. Heeren, Ron M. A. Porta Siegel, Tiffany Kremer, Bernd |
author_sort | Vaysse, Pierre-Maxence |
collection | PubMed |
description | [Image: see text] Radical resection for patients with oral cavity cancer remains challenging. Rapid evaporative ionization mass spectrometry (REIMS) of electrosurgical vapors has been reported for real-time classification of normal and tumor tissues for numerous surgical applications. However, the infiltrative pattern of invasion of oral squamous cell carcinomas (OSCC) challenges the ability of REIMS to detect low amounts of tumor cells. We evaluate REIMS sensitivity to determine the minimal amount of detected tumors cells during oral cavity cancer surgery. A total of 11 OSCC patients were included in this study. The tissue classification based on 185 REIMS ex vivo metabolic profiles from five patients was compared to histopathology classification using multivariate analysis and leave-one-patient-out cross-validation. Vapors were analyzed in vivo by REIMS during four glossectomies. Complementary desorption electrospray ionization–mass spectrometry imaging (DESI-MSI) was employed to map tissue heterogeneity on six oral cavity sections to support REIMS findings. REIMS sensitivity was assessed with a new cell-based assay consisting of mixtures of cell lines (tumor, myoblasts, keratinocytes). Our results depict REIMS classified tumor and soft tissues with 96.8% accuracy. In vivo REIMS generated intense mass spectrometric signals. REIMS detected 10% of tumor cells mixed with 90% myoblasts with 83% sensitivity and 82% specificity. DESI-MSI underlined distinct metabolic profiles of nerve features and a metabolic shift phosphatidylethanolamine PE(O-16:1/18:2))/cholesterol sulfate common to both mucosal maturation and OSCC differentiation. In conclusion, the assessment of tissue heterogeneity with DESI-MSI and REIMS sensitivity with cell mixtures characterized sensitive metabolic profiles toward in vivo tissue recognition during oral cavity cancer surgeries. |
format | Online Article Text |
id | pubmed-9118195 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-91181952022-05-20 Evaluation of the Sensitivity of Metabolic Profiling by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical Oral Cavity Cancer Resections Vaysse, Pierre-Maxence Demers, Imke van den Hout, Mari F. C. M. van de Worp, Wouter Anthony, Ian G. M. Baijens, Laura W. J. Tan, Bing I. Lacko, Martin Vaassen, Lauretta A. A. van Mierlo, Auke Langen, Ramon C. J. Speel, Ernst-Jan M. Heeren, Ron M. A. Porta Siegel, Tiffany Kremer, Bernd Anal Chem [Image: see text] Radical resection for patients with oral cavity cancer remains challenging. Rapid evaporative ionization mass spectrometry (REIMS) of electrosurgical vapors has been reported for real-time classification of normal and tumor tissues for numerous surgical applications. However, the infiltrative pattern of invasion of oral squamous cell carcinomas (OSCC) challenges the ability of REIMS to detect low amounts of tumor cells. We evaluate REIMS sensitivity to determine the minimal amount of detected tumors cells during oral cavity cancer surgery. A total of 11 OSCC patients were included in this study. The tissue classification based on 185 REIMS ex vivo metabolic profiles from five patients was compared to histopathology classification using multivariate analysis and leave-one-patient-out cross-validation. Vapors were analyzed in vivo by REIMS during four glossectomies. Complementary desorption electrospray ionization–mass spectrometry imaging (DESI-MSI) was employed to map tissue heterogeneity on six oral cavity sections to support REIMS findings. REIMS sensitivity was assessed with a new cell-based assay consisting of mixtures of cell lines (tumor, myoblasts, keratinocytes). Our results depict REIMS classified tumor and soft tissues with 96.8% accuracy. In vivo REIMS generated intense mass spectrometric signals. REIMS detected 10% of tumor cells mixed with 90% myoblasts with 83% sensitivity and 82% specificity. DESI-MSI underlined distinct metabolic profiles of nerve features and a metabolic shift phosphatidylethanolamine PE(O-16:1/18:2))/cholesterol sulfate common to both mucosal maturation and OSCC differentiation. In conclusion, the assessment of tissue heterogeneity with DESI-MSI and REIMS sensitivity with cell mixtures characterized sensitive metabolic profiles toward in vivo tissue recognition during oral cavity cancer surgeries. American Chemical Society 2022-05-03 2022-05-17 /pmc/articles/PMC9118195/ /pubmed/35503862 http://dx.doi.org/10.1021/acs.analchem.1c03583 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Vaysse, Pierre-Maxence Demers, Imke van den Hout, Mari F. C. M. van de Worp, Wouter Anthony, Ian G. M. Baijens, Laura W. J. Tan, Bing I. Lacko, Martin Vaassen, Lauretta A. A. van Mierlo, Auke Langen, Ramon C. J. Speel, Ernst-Jan M. Heeren, Ron M. A. Porta Siegel, Tiffany Kremer, Bernd Evaluation of the Sensitivity of Metabolic Profiling by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical Oral Cavity Cancer Resections |
title | Evaluation of the Sensitivity of Metabolic Profiling
by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical
Oral Cavity Cancer Resections |
title_full | Evaluation of the Sensitivity of Metabolic Profiling
by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical
Oral Cavity Cancer Resections |
title_fullStr | Evaluation of the Sensitivity of Metabolic Profiling
by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical
Oral Cavity Cancer Resections |
title_full_unstemmed | Evaluation of the Sensitivity of Metabolic Profiling
by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical
Oral Cavity Cancer Resections |
title_short | Evaluation of the Sensitivity of Metabolic Profiling
by Rapid Evaporative Ionization Mass Spectrometry: Toward More Radical
Oral Cavity Cancer Resections |
title_sort | evaluation of the sensitivity of metabolic profiling
by rapid evaporative ionization mass spectrometry: toward more radical
oral cavity cancer resections |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9118195/ https://www.ncbi.nlm.nih.gov/pubmed/35503862 http://dx.doi.org/10.1021/acs.analchem.1c03583 |
work_keys_str_mv | AT vayssepierremaxence evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT demersimke evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT vandenhoutmarifcm evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT vandeworpwouter evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT anthonyiangm evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT baijenslaurawj evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT tanbingi evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT lackomartin evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT vaassenlaurettaaa evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT vanmierloauke evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT langenramoncj evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT speelernstjanm evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT heerenronma evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT portasiegeltiffany evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections AT kremerbernd evaluationofthesensitivityofmetabolicprofilingbyrapidevaporativeionizationmassspectrometrytowardmoreradicaloralcavitycancerresections |